Projections of epidemic transmission and estimation of vaccination impact during an ongoing Ebola virus disease outbreak in Northeastern Democratic Republic of Congo, as of Feb. 25, 2019.

Background As of February 25, 2019, 875 cases of Ebola virus disease (EVD) were reported in North Kivu and Ituri Provinces, Democratic Republic of Congo. Since the beginning of October 2018, the outbreak has largely shifted into regions in which active armed conflict has occurred, and in which EVD c...

Full description

Bibliographic Details
Published in:PLOS Neglected Tropical Diseases
Main Authors: Lee Worden, Rae Wannier, Nicole A Hoff, Kamy Musene, Bernice Selo, Mathias Mossoko, Emile Okitolonda-Wemakoy, Jean Jacques Muyembe Tamfum, George W Rutherford, Thomas M Lietman, Anne W Rimoin, Travis C Porco, J Daniel Kelly
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2019
Subjects:
Online Access:https://doi.org/10.1371/journal.pntd.0007512
https://doaj.org/article/7d0a29cdeb21499e84be1bae5ed5ba5a
Description
Summary:Background As of February 25, 2019, 875 cases of Ebola virus disease (EVD) were reported in North Kivu and Ituri Provinces, Democratic Republic of Congo. Since the beginning of October 2018, the outbreak has largely shifted into regions in which active armed conflict has occurred, and in which EVD cases and their contacts have been difficult for health workers to reach. We used available data on the current outbreak, with case-count time series from prior outbreaks, to project the short-term and long-term course of the outbreak. Methods For short- and long-term projections, we modeled Ebola virus transmission using a stochastic branching process that assumes gradually quenching transmission rates estimated from past EVD outbreaks, with outbreak trajectories conditioned on agreement with the course of the current outbreak, and with multiple levels of vaccination coverage. We used two regression models to estimate similar projection periods. Short- and long-term projections were estimated using negative binomial autoregression and Theil-Sen regression, respectively. We also used Gott's rule to estimate a baseline minimum-information projection. We then constructed an ensemble of forecasts to be compared and recorded for future evaluation against final outcomes. From August 20, 2018 to February 25, 2019, short-term model projections were validated against known case counts. Results During validation of short-term projections, from one week to four weeks, we found models consistently scored higher on shorter-term forecasts. Based on case counts as of February 25, the stochastic model projected a median case count of 933 cases by February 18 (95% prediction interval: 872-1054) and 955 cases by March 4 (95% prediction interval: 874-1105), while the auto-regression model projects median case counts of 889 (95% prediction interval: 876-933) and 898 (95% prediction interval: 877-983) cases for those dates, respectively. Projected median final counts range from 953 to 1,749. Although the outbreak is already larger than ...