Extraction of high-accuracy control points using ICESat-2 ATL03 in urban areas

The ice, cloud, and land elevation satellite-2 (ICESat-2) can effectively measure global surface elevations and be used as a new data source for global elevation control. ICESat-2 has provided surface-specific data products on land/vegetation (ATL08), ice sheet (ATL06), inland water (ATL13), etc., b...

Full description

Bibliographic Details
Published in:International Journal of Applied Earth Observation and Geoinformation
Main Authors: Weiqi Lian, Guo Zhang, Hao Cui, Zhenwei Chen, Shaodong Wei, Chunyang Zhu, Zhigang Xie
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier 2022
Subjects:
Online Access:https://doi.org/10.1016/j.jag.2022.103116
https://doaj.org/article/7c746fb6cc7642eba053f9773f838431
Description
Summary:The ice, cloud, and land elevation satellite-2 (ICESat-2) can effectively measure global surface elevations and be used as a new data source for global elevation control. ICESat-2 has provided surface-specific data products on land/vegetation (ATL08), ice sheet (ATL06), inland water (ATL13), etc., but not on urban areas. The current research using ICESat-2 data to extract control points mostly based on products already provided, focusing on land, forest and other areas. Few studies have analyzed the feasibility of extracting control points in urban areas, as well as the position and elevation accuracy of control points. In this paper, we proposed a method for extracting high-accuracy control points from ATL03 in urban areas and evaluated the elevation and plane accuracy. First, building and ground photons were extracted and classified according to the photon shape features and neighborhood relationships, thereby addressing the insufficiency of ICESat-2 of not classifying photons in urban areas. Then, high-accuracy photons were selected from the ground photons as the laser control points considering the influence of land cover. Finally, the solid and undulating city outline was used for shape matching with DSM, thereby addressing the problem of plane accuracy evaluation in flat areas. We verified our method in two areas (Nanjing and Auckland) and showed that the method can adequately classify buildings and ground photons in different scenarios. The plane accuracy was better than 3.8 m, which lies well within ICESat-2′s mission requirement, with an elevation accuracy of better than 0.5 m, which meets the accuracy requirements of large-scale mapping, suggesting that photons in urban areas can also provide high-accuracy control data for stereo mapping.