Efficient Synthesis of Nickel-Molybdenum/USY-Zeolite Catalyst for Eliminating Impurities (N, S, and Cl) in the Waste Plastic Pyrolysis Oil: Dispersion Effect of Active Sites by Surfactant-Assisted Melt-Infiltration

The upgrading of waste plastic pyrolysis oil (WPPO) through hydrotreating (HDT) is crucial for transforming plastic waste into chemical feedstock. The catalytic role of HDT is of paramount importance for this conversion procedure. In this study, bimetallic catalysts based on Ni and Mo were prepared...

Full description

Bibliographic Details
Published in:Catalysts
Main Authors: Eui Hyun Cho, Ki-Duk Kim, Byung Sun Yoon, Eunkyung Cho, Yeon Jeong Yu, Tuan Ngoc Phan, Sang-Goo Jeon, Chang Hyun Ko
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2023
Subjects:
Online Access:https://doi.org/10.3390/catal13121476
https://doaj.org/article/7b75ee812efd4fa0878a90e23cf11425
Description
Summary:The upgrading of waste plastic pyrolysis oil (WPPO) through hydrotreating (HDT) is crucial for transforming plastic waste into chemical feedstock. The catalytic role of HDT is of paramount importance for this conversion procedure. In this study, bimetallic catalysts based on Ni and Mo were prepared using the surfactant-assisted melt-infiltration (SAMI) method, completely omitting the use of liquid solutions. Thorough analysis via X-ray diffraction, transmission electron microscopy, and hydrogen temperature-programmed reduction confirmed that the addition of Span60 surfactant effectively prevented the aggregation of Ni and Mo components, reduced the size of metal particles, and improved the dispersion of active sites on the zeolite supports. Consequently, NiMo-based catalysts incorporating Span60, synthesized using the SAMI method, exhibited a superior catalytic performance in the removal of nitrogen, sulfur, and chloride impurities from WPPO during HDT compared to those without surfactant. Specifically, the catalyst prepared with Span60 exhibited 15% higher nitrogen conversion compared to the catalyst prepared without Span60.