The interactive roles of Aedes aegypti super-production and human density in dengue transmission.

BACKGROUND: A. aegypti production and human density may vary considerably in dengue endemic areas. Understanding how interactions between these factors influence the risk of transmission could improve the effectiveness of the allocation of vector control resources. To evaluate the combined impacts o...

Full description

Bibliographic Details
Published in:PLoS Neglected Tropical Diseases
Main Authors: Harish Padmanabha, David Durham, Fabio Correa, Maria Diuk-Wasser, Alison Galvani
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2012
Subjects:
Online Access:https://doi.org/10.1371/journal.pntd.0001799
https://doaj.org/article/784cecc729fc4e9384dfb546d450590e
Description
Summary:BACKGROUND: A. aegypti production and human density may vary considerably in dengue endemic areas. Understanding how interactions between these factors influence the risk of transmission could improve the effectiveness of the allocation of vector control resources. To evaluate the combined impacts of variation in A. aegypti production and human density we integrated field data with simulation modeling. METHODOLOGY/PRINCIPAL FINDINGS: Using data from seven censuses of A. aegypti pupae (2007-2009) and from demographic surveys, we developed an agent-based transmission model of the dengue transmission cycle across houses in 16 dengue-endemic urban 'patches' (1-3 city blocks each) of Armenia, Colombia. Our field data showed that 92% of pupae concentrated in only 5% of houses, defined as super-producers. Average secondary infections (R(0)) depended on infrequent, but highly explosive transmission events. These super-spreading events occurred almost exclusively when the introduced infectious person infected mosquitoes that were produced in super-productive containers. Increased human density favored R(0), and when the likelihood of human introduction of virus was incorporated into risk, a strong interaction arose between vector production and human density. Simulated intervention of super-productive containers was substantially more effective in reducing dengue risk at higher human densities. SIGNIFICANCE/CONCLUSIONS: These results show significant interactions between human population density and the natural regulatory pattern of A. aegypti in the dynamics of dengue transmission. The large epidemiological significance of super-productive containers suggests that they have the potential to influence dengue viral adaptation to mosquitoes. Human population density plays a major role in dengue transmission, due to its potential impact on human-A. aegypti contact, both within a person's home and when visiting others. The large variation in population density within typical dengue endemic cities suggests that it should be a ...