Increased Peatland Nutrient Availability Following the Fort McMurray Horse River Wildfire

Northern peatlands are experiencing increased wildfire disturbance, threatening peatland biogeochemical function and ability to remain major stores of carbon (C) and macronutrients (nitrogen—N, and phosphorus—P). The impacts of climate change-driven drying on peatland nutrient dynamics have been exp...

Full description

Bibliographic Details
Published in:Diversity
Main Authors: Christine van Beest, Richard Petrone, Felix Nwaishi, James Michael Waddington, Merrin Macrae
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2019
Subjects:
Online Access:https://doi.org/10.3390/d11090142
https://doaj.org/article/76a2e85b83ef4228837ed477711c6939
Description
Summary:Northern peatlands are experiencing increased wildfire disturbance, threatening peatland biogeochemical function and ability to remain major stores of carbon (C) and macronutrients (nitrogen—N, and phosphorus—P). The impacts of climate change-driven drying on peatland nutrient dynamics have been explored previously; however, the impacts of wildfire on nutrient dynamics have not been examined when comparing burned and unburned areas in a post-fire fen. This study assessed the impact of wildfire on N and P bioavailability, change in CNP stoichiometric balance and feedback on plant nutrient limitation patterns in a fen peatland, one-year post-wildfire, by comparing Burned and Unburned areas. Water extractable P increased up to 200 times in shallow leachate, 125 times in groundwater and 5 times in peat. Surface ash leachate had increased concentrations in Ammonium (NH 4 + ) and Nitrate (NO 3 − ), and through groundwater mobility, increased extractable N concentrations were observed in peat throughout the entire fen. The net mineralization of N and P were minimal at the Burned areas relative to Unburned areas. Fire affected plant nutrient limitation patterns, switching from dominantly N-limited to NP co-limited and P-limitation in moss and vascular species respectively. The top 20 cm of the Burned area C concentrations was higher relative to the Unburned area, with increased CN and CP ratios also being found in the Burned area. These findings suggest that the long-term effects of elevated C, N, and P concentrations on plant productivity and decomposition must be re-evaluated for fire disturbance to understand the resiliency of peatland biogeochemistry post-wildfire.