Evidence of Warming From Long-Term Records of Climate and Permafrost in the Hinterland of the Qinghai–Tibet Plateau

The Qinghai–Tibet Plateau (QTP) is characterized by its extreme climate and dominated by periglacial processes. Permafrost conditions vary greatly, and the recent changes on the QTP are not well known in the hinterland. Here, we examine the changes in climate and permafrost temperatures in several d...

Full description

Bibliographic Details
Published in:Frontiers in Environmental Science
Main Authors: Fujun Zhou, Miaomiao Yao, Xingwen Fan, Guoan Yin, Xianglian Meng, Zhanju Lin
Format: Article in Journal/Newspaper
Language:English
Published: Frontiers Media S.A. 2022
Subjects:
Online Access:https://doi.org/10.3389/fenvs.2022.836085
https://doaj.org/article/6eed169fdb0240a9aef7bd39b10df308
Description
Summary:The Qinghai–Tibet Plateau (QTP) is characterized by its extreme climate and dominated by periglacial processes. Permafrost conditions vary greatly, and the recent changes on the QTP are not well known in the hinterland. Here, we examine the changes in climate and permafrost temperatures in several different regions. Climate data were obtained from three weather stations from 1957 to 2019. Annual mean air temperature (Ta) has gradually increased at .031°C/yr–.039°C/yr. Climate warming has been more rapid in the past two decades, particularly during the cold season (November to February). Precipitation has also been slowly increasing during the instrumental record. However, there is pronounced heterogeneity in the seasonal distribution of precipitation, with very little falling between October and April. Ground temperatures and active-layer thickness (ALT) have been investigated over ∼20 years at five sites representative of the hinterland of the QTP. These sites are located along the Qinghai–Tibet Highway, which crosses the permafrost zone and traverses the mountainous area and basin areas. Annual mean ground temperatures within the active layer (Tal ∼ 1 m depth) indicate recent ground warming at all sites, at rates near .05°C/yr. The ALT at five sites has been increasing steadily by 2–9 cm/yr, with an average of 4.6 cm/yr. The temperature near the permafrost table (Tps) has been increasing at .01°C/yr and .06°C/yr, with an average of .03°C/yr. Permafrost temperatures at 15 m depth (Tg) have been increasing by about .01°C/yr–.02°C/yr. The southern boundary (AD site) of the permafrost has warmed the least among the five locations. In high mountainous areas where permafrost temperatures are low (e.g., KLS site), the annual mean Tg has increased by nearly .02°C/yr. The rate of permafrost warming at a basin site (BLH), with relatively high ground temperatures, was approximately .01°C/yr. The GIPL2.0 model simulation results indicate that the annual mean permafrost temperature at 1 m depth at these sites will increase ...