A permeameter for temperate ice: first results on permeability sensitivity to grain size

Results of ice-stream models that treat temperate ice deformation as a two-phase flow are sensitive to the ice permeability. We have constructed and begun using a custom, falling-head permeameter for measuring the permeability of temperate, polycrystalline ice. Chilled water is passed through an ice...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Jacob R. Fowler, Neal R. Iverson
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press 2022
Subjects:
Online Access:https://doi.org/10.1017/jog.2021.136
https://doaj.org/article/6cc4a2170cc24af4b85443e51569592a
Description
Summary:Results of ice-stream models that treat temperate ice deformation as a two-phase flow are sensitive to the ice permeability. We have constructed and begun using a custom, falling-head permeameter for measuring the permeability of temperate, polycrystalline ice. Chilled water is passed through an ice disk that is kept at the pressure-melting temperature while the rate of head decrease indicates the permeability. Fluorescein dye in the water allows water-vein geometry to be studied using fluorescence microscopy. Water flow over durations of seconds to hours is Darcian, and for grain diameter d increasing from 1.7 to 8.9 mm, average permeability decreases from 2 × 10−12 to 4 × 10−15 m2. In tests with dye on fine (d = 2 mm) and coarse (d = 7 mm) ice, average area-weighted vein radii are nearly equal, 41 and 34 μm, respectively. These average radii, if included in a theory slightly modified from Nye and Frank (1973), yield permeability values within a factor of 2.0 of best-fit values based on regression of the data. Permeability values depend on d−3.4, rather than d−2 as predicted by models if vein radii are considered independent of d. In future experiments, the dependence of permeability on liquid water content will be measured.