Interaction of Dense Shelf Waters of the Barents and Kara Seas with the Eddy Structures

Purpose. Considered are the processes of dense bottom water formation in winter in the region of the Novaya Zemlya northwestern coast, its further propagation (cascading) towards the St. Anna trough and then to the open ocean. The goal of the paper is to show that the process of such propagation is...

Full description

Bibliographic Details
Published in:Physical Oceanography
Main Authors: G.A. Platov, E.N. Golubeva
Format: Article in Journal/Newspaper
Language:English
Published: Federal State Budget Scientific Institution «Marine Hydrophysical Institute of RAS» 2019
Subjects:
Online Access:https://doi.org/10.22449/1573-160X-2019-6-484-503
https://doaj.org/article/6c2499713d4348738e0e28a6b204e0a8
Description
Summary:Purpose. Considered are the processes of dense bottom water formation in winter in the region of the Novaya Zemlya northwestern coast, its further propagation (cascading) towards the St. Anna trough and then to the open ocean. The goal of the paper is to show that the process of such propagation is closely related to generation of the mesoscale eddies. Methods and Results. The data of available measurements indicate only some residual forms of such a movement, since they cover mainly a summer season. Numerical study was carried out using the system of the nested models SibCIOM and SibPOM. In course of the numerical experiments it became possible to show the system capability in describing the water bottom structure and to reproduce the process of bottom water propagation in details. Analysis of the above-mentioned process has revealed energy conversion of the available potential energy of a regular motion into the potential energy of eddy formations. The eddy structures’ ageostrophicity, in its turn, contributes to the accelerated advancement of dense shelf waters downard along the sloping bottom. Conclusions. One of the important features of cascading is that at the initial stage, it is accompanied by active generation of the mesoscale eddy structures. Both processes interact energetically and contribute to increase of heat and mass exchange between the shelf and the open ocean. Proper description of this exchange is a prerequisite for successful modeling of the intermediate and deep water thermodynamics in the Arctic Ocean.