Degradation of ochratoxins A and B by lipases: A kinetic study unraveled by molecular modeling

Mycotoxins are toxic substances produced by fungi and, frequently, different mycotoxins cooccur in food commodities. Ochratoxin A (OTA) and Ochratoxin B (OTB) may co-occur in a variety of foods, like red wines and wheat, presenting a significant risk of population exposure. In this study, we investi...

Full description

Bibliographic Details
Published in:Heliyon
Main Authors: Joana Santos, Tarsila Castro, Armando VenĂ¢ncio, Carla Silva
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier 2023
Subjects:
Online Access:https://doi.org/10.1016/j.heliyon.2023.e19921
https://doaj.org/article/69ef7e965de943899aa41bb47e17c731
Description
Summary:Mycotoxins are toxic substances produced by fungi and, frequently, different mycotoxins cooccur in food commodities. Ochratoxin A (OTA) and Ochratoxin B (OTB) may co-occur in a variety of foods, like red wines and wheat, presenting a significant risk of population exposure. In this study, we investigated the potential of five lipases (Candida rugosa Lipase, Candida antarctica B Lipase, Thermomyces lanuginosus Lipase, Amano Lipase A from Aspergillus niger (ANL) and Porcine Pancreas Lipase (PPL)) to hydrolyze OTA and OTB into non-hazardous products. Only ANL and PPL degraded both substrates, however, with varying degrees of efficiency. PPL completely degraded OTB (9 h), but only 43% of OTA (25 h). Molecular simulations indicated a high binding energy of OTA to PPL, that can be explained by the impact of the chlorine group, impairing hydrolysis. ANL was able to completely degrade both mycotoxins, OTA in 3 h and OTB in 10 h. The ANL enzyme showed also high specificity to OTA, however, the activity of this enzyme is not affected by chlorine and hydrolyzes OTA faster than OTB. These two enzymes were found to be able to detoxify co-occurring ochratoxins A and B, making isolated enzymes an alternative to the direct use of microorganisms for mycotoxin mitigation in food.