Extreme melt season ice layers reduce firn permeability across Greenland
The long-term impact of extreme surface melt on the Greenland Ice Sheet is poorly constrained. Here the authors use airborne radar to characterize a subsurface refrozen melt layer that formed following extreme melt in 2012, showing that it likely reduced drainage pathways for subsequent melt.
Published in: | Nature Communications |
---|---|
Main Authors: | , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Nature Portfolio
2021
|
Subjects: | |
Online Access: | https://doi.org/10.1038/s41467-021-22656-5 https://doaj.org/article/67ed3419f4984bf2b7565a8cefe18319 |
Summary: | The long-term impact of extreme surface melt on the Greenland Ice Sheet is poorly constrained. Here the authors use airborne radar to characterize a subsurface refrozen melt layer that formed following extreme melt in 2012, showing that it likely reduced drainage pathways for subsequent melt. |
---|