An observation-based assessment of the influences of air temperature and snow depth on soil temperature in Russia

This study assessed trends in the variability of soil temperature (T _SOIL ) using spatially averaged observation records from Russian meteorological land stations. The contributions of surface air temperature (SAT) and snow depth (SND) to T _SOIL variation were quantitatively evaluated. Composite t...

Full description

Bibliographic Details
Published in:Environmental Research Letters
Main Authors: Hotaek Park, Artem B Sherstiukov, Alexander N Fedorov, Igor V Polyakov, John E Walsh
Format: Article in Journal/Newspaper
Language:English
Published: IOP Publishing 2014
Subjects:
Q
Online Access:https://doi.org/10.1088/1748-9326/9/6/064026
https://doaj.org/article/67bdad7b6e944cc9ab7313f1e625ef37
Description
Summary:This study assessed trends in the variability of soil temperature (T _SOIL ) using spatially averaged observation records from Russian meteorological land stations. The contributions of surface air temperature (SAT) and snow depth (SND) to T _SOIL variation were quantitatively evaluated. Composite time series of these data revealed positive trends during the period of 1921–2011, with accelerated increases since the 1970s. The T _SOIL warming rate over the entire period was faster than the SAT warming rate in both permafrost and non-permafrost regions, suggesting that SND contributes to T _SOIL warming. Statistical analysis revealed that the highest correlation between SND and T _SOIL was in eastern Siberia, which is underlain by permafrost. SND in this region accounted for 50% or more of the observed variation in T _SOIL . T _SOIL in the non-permafrost region of western Siberia was significantly correlated with changes in SAT. Thus, the main factors associated with T _SOIL variation differed between permafrost and non-permafrost regions. This finding underscores the importance of including SND data when assessing historical and future variations and trends of permafrost in the Northern Hemisphere.