A Tri-Band Cooled Receiver for Geodetic VLBI

This paper shows a simultaneous tri-band (S: 2.2–2.7 GHz, X: 7.5–9 GHz and Ka: 28–33 GHz) low-noise cryogenic receiver for geodetic Very Long Baseline Interferometry (geo-VLBI) which has been developed at Yebes Observatory laboratories in Spain. A special feature is that the whole receiver front-end...

Full description

Bibliographic Details
Published in:Sensors
Main Authors: José A. López-Pérez, Félix Tercero-Martínez, José M. Serna-Puente, Beatriz Vaquero-Jiménez, María Patino-Esteban, Pablo García-Carreño, Javier González-García, Óscar García-Pérez, Francisco J. Beltrán-Martínez, Carlos Albo-Castaño, Juan D. Gallego-Puyol, Isaac López-Fernández, Carmen Díez-González, Inmaculada Malo-Gómez, Laura Barbas-Calvo, Pablo de Vicente-Abad, José A. López-Fernández
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2021
Subjects:
Online Access:https://doi.org/10.3390/s21082662
https://doaj.org/article/6774ef68963845cf9cf0b22c1257c0b3
Description
Summary:This paper shows a simultaneous tri-band (S: 2.2–2.7 GHz, X: 7.5–9 GHz and Ka: 28–33 GHz) low-noise cryogenic receiver for geodetic Very Long Baseline Interferometry (geo-VLBI) which has been developed at Yebes Observatory laboratories in Spain. A special feature is that the whole receiver front-end is fully coolable down to cryogenic temperatures to minimize receiver noise. It was installed in the first radio telescope of the Red Atlántica de Estaciones Geodinámicas y Espaciales (RAEGE) project, which is located in Yebes Observatory, in the frame of the VLBI Global Observing System (VGOS). After this, the receiver was borrowed by the Norwegian Mapping Autorithy (NMA) for the commissioning of two VGOS radiotelescopes in Svalbard (Norway). A second identical receiver was built for the Ishioka VGOS station of the Geospatial Information Authority (GSI) of Japan, and a third one for the second RAEGE VGOS station, located in Santa María (Açores Archipelago, Portugal). The average receiver noise temperatures are 21, 23, and 25 Kelvin and the measured antenna efficiencies are 70%, 75%, and 60% in S-band, X-band, and Ka-band, respectively.