Transgenic Plasmodium parasites stably expressing Plasmodium vivax dihydrofolate reductase-thymidylate synthase as in vitro and in vivo models for antifolate screening

Abstract Background Plasmodium vivax is the most prevalent cause of human malaria in tropical regions outside the African continent. The lack of a routine continuous in vitro culture of this parasite makes it difficult to develop specific drugs for this disease. To facilitate the development of anti...

Full description

Bibliographic Details
Published in:Malaria Journal
Main Authors: Yuthavong Yongyuth, Srichairatanakool Somdet, Prommana Parichat, Uthaipibull Chairat, Somsak Voravuth, Kamchonwongpaisan Sumalee
Format: Article in Journal/Newspaper
Language:English
Published: BMC 2011
Subjects:
Online Access:https://doi.org/10.1186/1475-2875-10-291
https://doaj.org/article/661ebab30dd64f2b99cf87d8e9cfd302
Description
Summary:Abstract Background Plasmodium vivax is the most prevalent cause of human malaria in tropical regions outside the African continent. The lack of a routine continuous in vitro culture of this parasite makes it difficult to develop specific drugs for this disease. To facilitate the development of anti- P. vivax drugs, bacterial and yeast surrogate models expressing the validated P. vivax target dihydrofolate reductase-thymidylate synthase (DHFR-TS) have been generated; however, they can only be used as primary screening models because of significant differences in enzyme expression level and in vivo drug metabolism between the surrogate models and P. vivax parasites. Methods Plasmodium falciparum and Plasmodium berghei parasites were transfected with DNA constructs bearing P. vivax dhfr-ts pyrimethamine sensitive (wild-type) and pyrimethamine resistant (mutant) alleles. Double crossover homologous recombination was used to replace the endogenous dhfr-ts of P. falciparum and P. berghei parasites with P. vivax homologous genes. The integration of Pvdhfr-ts genes via allelic replacement was verified by Southern analysis and the transgenic parasites lines validated as models by standard drug screening assays. Results Transgenic P. falciparum and P. berghei lines stably expressing Pv DHFR-TS replacing the endogenous parasite DHFR-TS were obtained. Anti-malarial drug screening assays showed that transgenic parasites expressing wild-type Pv DHFR-TS were pyrimethamine-sensitive, whereas transgenic parasites expressing mutant Pv DHFR-TS were pyrimethamine-resistant. The growth and sensitivity to other types of anti-malarial drugs in the transgenic parasites were otherwise indistinguishable from the parental parasites. Conclusion With the permanent integration of Pvdhfr-ts gene in the genome, the transgenic Plasmodium lines expressing Pv DHFR-TS are genetically stable and will be useful for screening anti- P. vivax compounds targeting Pv DHFR-TS. A similar approach could be used to generate transgenic models specific for ...