Wood Vault: remove atmospheric CO2 with trees, store wood for carbon sequestration for now and as biomass, bioenergy and carbon reserve for the future

Abstract Background Wood harvesting and storage (WHS) is a hybrid Nature-Engineering combination method to combat climate change by harvesting wood sustainably and storing it semi-permanently for carbon sequestration. To date, the technology has only been purposefully tested in small-scale demonstra...

Full description

Bibliographic Details
Published in:Carbon Balance and Management
Main Authors: Ning Zeng, Henry Hausmann
Format: Article in Journal/Newspaper
Language:English
Published: BMC 2022
Subjects:
Online Access:https://doi.org/10.1186/s13021-022-00202-0
https://doaj.org/article/64aeb39a71524015993be46ee58c9350
Description
Summary:Abstract Background Wood harvesting and storage (WHS) is a hybrid Nature-Engineering combination method to combat climate change by harvesting wood sustainably and storing it semi-permanently for carbon sequestration. To date, the technology has only been purposefully tested in small-scale demonstration projects. This study aims to develop a concrete way to carry out WHS at large-scale. Results We describe a method of constructing a wood storage facility, named Wood Vault, that can bury woody biomass on a mega-tonne scale in specially engineered enclosures to ensure anaerobic environments, thus preventing wood decay. The buried wood enters a quasi-geological reservoir that is expected to stay intact semi-permanently. Storing wood in many environments is possible, leading to seven versions of Wood Vault: (1) Burial Mound (Tumulus or Barrow), (2) Underground (Pit, Quarry, or Mine), (3) Super Vault, (4) Shelter, (5) AquaOpen or AquaVault with wood submerged under water, (6) DesertOpen or DesertVault in dry regions, (7) FreezeVault in cold regions such as Antarctica. Smaller sizes are also possible, named Baby Vault. A prototype Wood Vault Unit (WVU) occupies 1 hectare (ha, 100 m by 100 m) of surface land, 20 m tall, stores up to 100,000 m3 of wood, sequestering 0.1 MtCO2. A 1 MtCO2 y−1 sequestration rate can be achieved by collecting currently unused wood residuals (WR) on an area of 25,000 km2, the size of 10 typical counties in the eastern US, corresponding to an average transportation distance of less than 100 km. After 30 years of operation, such a Wood Vault facility would have sequestered 30 MtCO2, stored in 300 WVUs, occupying a land surface of 300 ha. The cost is estimated at $10–50/tCO2 with a mid-point price of $30/tCO2. To sequester 1 GtCO2 y−1, wood can be sourced from currently unexploited wood residuals on an area of 9 Mkm2 forested land (9 million square kilometers, size of the US), corresponding to a low areal harvesting intensity of 1.1 tCO2 ha−1 y−1. Alternatively, giga-tonne scale carbon removal ...