Genome-wide profiling of DNA methylation and gene expression in Crassostrea gigas male gametes

DNA methylation patterns and functions are variable across invertebrate taxa. In order to provide a better understanding of DNA methylation in the Pacific oyster (Crassostrea gigas), we characterized the genome-wide DNA methylation profile in male gamete cells using whole-genome bisulfite sequencing...

Full description

Bibliographic Details
Published in:Frontiers in Physiology
Main Authors: Claire E. Olson, Steven B. Roberts
Format: Article in Journal/Newspaper
Language:English
Published: Frontiers Media S.A. 2014
Subjects:
Online Access:https://doi.org/10.3389/fphys.2014.00224
https://doaj.org/article/644e8a9a5e274e67969504012346bf14
Description
Summary:DNA methylation patterns and functions are variable across invertebrate taxa. In order to provide a better understanding of DNA methylation in the Pacific oyster (Crassostrea gigas), we characterized the genome-wide DNA methylation profile in male gamete cells using whole-genome bisulfite sequencing. RNA-Seq analysis was performed to examine the relationship between DNA methylation and transcript expression. Methylation status of over 7.6 million CpG dinucleotides was described with a majority of methylated regions occurring among intragenic regions. Overall, 15% of the CpG dinucleotides were determined to be methylated and the mitochondrial genome lacked DNA methylation. Integrative analysis of DNA methylation and RNA-Seq data revealed a positive association between methylation status, both in gene bodies and putative promoter regions, and expression. This study provides a comprehensive characterization of the distribution of DNA methylation in the oyster male gamete tissue and that DNA methylation is likely involved in gene regulatory activity.