Exploring the impact of southern ocean sea ice on the Indian Ocean swells

Abstract The present study analyzes the impact of the Southern Ocean (SO) sea ice concentration on the north Indian Ocean (NIO) wave fields through swells using 6 years (2016–2021) of WAVEWATCH III (WWIII) simulations. We did two experimental runs of WWIII, one with sea ice concentration and winds a...

Full description

Bibliographic Details
Published in:Scientific Reports
Main Authors: Meenakshi Sreejith, Remya P. G., B. Praveen Kumar, Abhijith Raj, T. M. Balakrishnan Nair
Format: Article in Journal/Newspaper
Language:English
Published: Nature Portfolio 2022
Subjects:
R
Q
Online Access:https://doi.org/10.1038/s41598-022-16634-0
https://doaj.org/article/609acc5a8e154a1a8b090329a408ddb1
Description
Summary:Abstract The present study analyzes the impact of the Southern Ocean (SO) sea ice concentration on the north Indian Ocean (NIO) wave fields through swells using 6 years (2016–2021) of WAVEWATCH III (WWIII) simulations. We did two experimental runs of WWIII, one with sea ice concentration and winds as the forcing (W3 with_ice ) and the second run with only wind forcing (W3 no_ice ). Analysis shows the impact of the SO sea ice concentration on northward swell peaks in September–November, coinciding with the maximum sea ice extent in the Antarctic region of the Indian Ocean. W3 no_ice simulations are biased more by ~ 60% and ~ 37% in significant wave height and period, respectively, against W3 with_ice when compared with NIO mooring data. W3 no_ice simulates low-frequency swells and travels fast towards NIO, with implications for operational oceanography. We have shown that the forecasts of the timing of high swell events along NIO coasts can be erroneous by ~ 12 h if the SO sea ice concentration is not included in the model. Further, W3 no_ice could potentially produce false swell alerts along southeastern Australian coasts. In summary, our study highlights the importance of the SO sea ice concentration inclusion in the wave models to accurately simulate NIO waves.