Climate projections over the Antarctic Peninsula region to the end of the 21st century. Part II: wet/dry indices

Objective of the study is an assessment of possible climate change in the region of the Antarctic Peninsula from 1986 until the end of the 21st century projected by the RCMs’ ensemble. During the last decades Antarctica has undergone predominantly warming, with the highest rate of surface air temper...

Full description

Bibliographic Details
Published in:Ukrainian Antarctic Journal
Main Authors: A. Chyhareva, S. Krakovska, D. Pishniak
Format: Article in Journal/Newspaper
Language:English
Ukrainian
Published: State Institution National Antarctic Scientific Center 2020
Subjects:
Online Access:https://doi.org/10.33275/1727-7485.2(19).2019.151
https://doaj.org/article/5ee8b4bd2f824d09b8acc1df25b15707
Description
Summary:Objective of the study is an assessment of possible climate change in the region of the Antarctic Peninsula from 1986 until the end of the 21st century projected by the RCMs’ ensemble. During the last decades Antarctica has undergone predominantly warming, with the highest rate of surface air temperature increase found over the Antarctic Peninsula, where the Ukrainian Antarctic Akademik Vernadsky station is located. There is a unique ecosystem in the region which is vulnerable and under the growing impact of a changing weather regime due to rapid climate changes with consequent changes in sea ice, land distribution under snow/ice, etc. Thus, an important task for the region is an estimation of climate change trends and definition of possible subregionalization. Data and methods. Data of two regional climate models HIRHAM5 and RACMO21P forced by two global climate models EC-EARTH and HadGEM from the Polar-CORDEX (Coordinated Regional Downscaling Experiment - Arctic and Antarctic Domains) as part of the international CORDEX initiative were used in the study. Spatial distribution of the model output is 0.44°. Set of scripting codes developed by Climate4R project (An R Framework for Climate Data Access and Postprocessing) was modified in order to extract data for the Antarctic Peninsula region from the Antarctic domain and obtain climatological characteristics for individual RCMs and their ensemble mean. Projected changes in wet/dry climate indices for scenarios RCP4.5 and RCP8.5 for two periods 2041—2060 and 2081—2100 were assessed with respect to the historical experiment 1986—2005. Results. An analysis of projected wet/dry climate indices for both RCP4.5 and RCP8.5 scenarios is presented in Part II of the paper. An analysis of the cold temperature indices (FD, ID) is presented in Part I of the study. In the historical experiment Larsen Ice Shelf and leeward east coast are the regions with the lowest total precipitation in wet days (PRCPTOT, 200—300 mm) and simple daily intensity index (SDII, about 5 mm/day) with ...