Bacteria in Himalayan glacial ice and its relationship to dust

Concentrations and community diversity of bacteria from 50 segments of a 108.83 m ice core drilled from the East Rongbuk (ER) Glacier (28.03° N, 86.96° E, 6518 m above sea level) on the northeast slope of Mt. Qomolangma (Everest), covering the period 950–1963 AD, were investigated by epifluorescence...

Full description

Bibliographic Details
Main Authors: S. Zhang, S. Hou, Y. Wu, D. Qin
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2008
Subjects:
Online Access:https://doaj.org/article/5ca3d2b2638544538a25a675e666c394
Description
Summary:Concentrations and community diversity of bacteria from 50 segments of a 108.83 m ice core drilled from the East Rongbuk (ER) Glacier (28.03° N, 86.96° E, 6518 m above sea level) on the northeast slope of Mt. Qomolangma (Everest), covering the period 950–1963 AD, were investigated by epifluorescence microscope, DGGE and Shannon-Weaver index analysis. Bacteria in the ER core were identified as β, γ- proteobacteria and Firmicutes group, with γ- proteobacteria being the dominance. Different bacterial population was identified along the core, reflecting the effects of climatic and environmental changes on the bacterial distribution in the glacial ice. There are four general periods of bacterial diversity, corresponding to four phases of dust abundance revealed by Ca 2+ concentrations. However, a previously suggested positive correlation between bacterial and Ca 2+ concentrations was not indicated by our observations. Instead, a weak negative correlation was found between these two parameters. Our results suggest that bacterial community diversity, rather than concentrations, might be a suitable biological proxy for the reconstruction of past climatic and environmental changes preserved in glacial ice.