Variation of Antarctic circumpolar current and its intensification in relation to the southern annular mode detected in the time-variable gravity signals by GRACE satellite

Abstract The southern annular mode (SAM) in the atmosphere and the Antarctic circumpolar current (ACC) in the ocean play decisive roles in the climatic system of the mid- to high-latitude southern hemisphere. Using the time-variable gravity data from the GRACE satellite mission, we find the link bet...

Full description

Bibliographic Details
Published in:Earth, Planets and Space
Main Authors: Jen-Ru Liau, Benjamin F. Chao
Format: Article in Journal/Newspaper
Language:English
Published: SpringerOpen 2017
Subjects:
G
Online Access:https://doi.org/10.1186/s40623-017-0678-3
https://doaj.org/article/5ac72ff02c6d428e9e4396bfb2040268
Description
Summary:Abstract The southern annular mode (SAM) in the atmosphere and the Antarctic circumpolar current (ACC) in the ocean play decisive roles in the climatic system of the mid- to high-latitude southern hemisphere. Using the time-variable gravity data from the GRACE satellite mission, we find the link between the space–time variabilities of the ACC and the SAM. We calculate the empirical orthogonal functions (EOF) of the non-seasonal ocean bottom pressure (OBP) field in the circum-Antarctic seas from the GRACE data for the period from 2003 to 2015. We find that the leading EOF mode of the non-seasonal OBP represents a unison OBP oscillation around Antarctica with time history closely in pace with that of the SAM Index with a high correlation of 0.77. This OBP variation gives rise to a variation in the geostrophic flow field; the result for the same EOF mode shows heightened variations in the zonal velocity that resides primarily in the eastern hemispheric portion of the ACC and coincided geographically with the southernmost boundary of the ACC’s main stream. Confirming previous oceanographic studies, these geodetic satellite results provide independent information toward better understanding of the ACC–SAM process. Graphical Abstract .