Pan-Arctic ocean wind and wave data by spaceborne SAR

The Arctic is one of the most significant changing areas on the Earth under the climate change scenario. More regions in the Arctic are becoming ice-free oceans in the melting season or through the whole year. Therefore, ocean wind and wave, as the two most important parameters in the air–sea interf...

Full description

Bibliographic Details
Published in:Big Earth Data
Main Authors: Xiao-Ming Li, Ke Wu, Bingqing Huang
Format: Article in Journal/Newspaper
Language:English
Published: Taylor & Francis Group 2022
Subjects:
G
Online Access:https://doi.org/10.1080/20964471.2021.1996858
https://doaj.org/article/5a9bf264cda54c7695e14b8c0856150e
Description
Summary:The Arctic is one of the most significant changing areas on the Earth under the climate change scenario. More regions in the Arctic are becoming ice-free oceans in the melting season or through the whole year. Therefore, ocean wind and wave, as the two most important parameters in the air–sea interface, are drawing significant attention to the Arctic Ocean. Scatterometer and radar altimeter are the two traditional remote sensing instruments for ocean wind and wave observations, while the former is limited by coarse spatial resolution and the latter has small spatial coverage. Wind and wave data in high spatial resolution and wide coverage by synthetic aperture radar (SAR) are currently lacking in the Arctic Ocean. We developed an ocean wind and wave dataset by Sentinel-1 SAR in the pan-Arctic Ocean (above 60°N), covering January 2017 to May 2021. By comparing with sea surface wind speed data of scatterometer, the SAR-retrieved wind data achieve an accuracy of 1.23 m/s, in terms of root mean square error (RMSE). Compared with significant wave height data of radar altimeter, the SAR retrievals have an RMSE of 0.66 m. The data records are in the standard NetCDF-4 format. The dataset is publicly available at: http://www.dx.doi.org/10.11922/sciencedb.00834.