Backpack PCR: A point-of-collection diagnostic platform for the rapid detection of Brugia parasites in mosquitoes.
Background Currently, molecular xenomonitoring efforts for lymphatic filariasis rely on PCR or real-time PCR-based detection of Brugia malayi, Brugia timori and Wuchereria bancrofti in mosquito vectors. Most commonly, extraction of DNA from mosquitoes is performed using silica column-based technolog...
Published in: | PLOS Neglected Tropical Diseases |
---|---|
Main Authors: | , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Public Library of Science (PLoS)
2018
|
Subjects: | |
Online Access: | https://doi.org/10.1371/journal.pntd.0006962 https://doaj.org/article/56a78f97b4234428b4fdcf0cbaa58506 |
Summary: | Background Currently, molecular xenomonitoring efforts for lymphatic filariasis rely on PCR or real-time PCR-based detection of Brugia malayi, Brugia timori and Wuchereria bancrofti in mosquito vectors. Most commonly, extraction of DNA from mosquitoes is performed using silica column-based technologies. However, such extractions are both time consuming and costly, and the diagnostic testing which follows typically requires expensive thermal cyclers or real-time PCR instruments. These expenses present significant challenges for laboratories in many endemic areas. Accordingly, in such locations, there exists a need for inexpensive, equipment-minimizing diagnostic options that can be transported to the field and implemented in minimal resource settings. Here we present a novel diagnostic approach for molecular xenomonitoring of filarial parasites in mosquitoes that uses a rapid, NaOH-based DNA extraction methodology coupled with a portable, battery powered PCR platform and a test strip-based DNA detection assay. While the research reported here serves as a proof-of-concept for the backpack PCR methodology for the detection of filarial parasites in mosquitoes, the platform should be easily adaptable to the detection of W. bancrofti and other mosquito-transmitted pathogens. Methodology/principal findings Through comparisons with standard silica column-based DNA extraction techniques, we evaluated the performance of a rapid, NaOH-based methodology for the extraction of total DNA from pools of parasite-spiked vector mosquitoes. We also compared our novel test strip-based detection assay to real-time PCR and conventional PCR coupled with gel electrophoresis, and demonstrated that this method provides sensitive and genus-specific detection of parasite DNA from extracted mosquito pools. Finally, by comparing laboratory-based thermal cycling with a field-friendly miniaturized PCR approach, we have demonstrated the potential for the point-of-collection-based use of this entire diagnostic platform that is compact enough to ... |
---|