Laminaria hyperborea as a Source of Valuable Glyceroglycolipids—A Characterization of Galactosyldiacilglycerols in Stipe and Blade by HPLC-MS/MS

Laminaria hyperborea (Gunnerus) Foslie 1885 is a seaweed native to the North Atlantic, which is utilized in the production of alginate. Its potential as a source of bioactive lipids remains unexplored. In this study, mono- and digalactosyldiacylglycerols (MGDG and DGDG) were identified in stipe and...

Full description

Bibliographic Details
Published in:AppliedChem
Main Authors: Lena Foseid, Hanne Devle, Carl Fredrik Naess-Andresen, Dag Ekeberg
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2022
Subjects:
Online Access:https://doi.org/10.3390/appliedchem2040013
https://doaj.org/article/53bbf6f896a84024a425b25b06c1182a
Description
Summary:Laminaria hyperborea (Gunnerus) Foslie 1885 is a seaweed native to the North Atlantic, which is utilized in the production of alginate. Its potential as a source of bioactive lipids remains unexplored. In this study, mono- and digalactosyldiacylglycerols (MGDG and DGDG) were identified in stipe and blade from L. hyperborea for the first time. Samples were harvested off the west coast of Norway in May 2018. Lipids were extracted with chloroform:methanol (2:1, v / v ) and fractionated using solid phase extraction, whereupon the fatty acid content was determined by gas chromatography-mass spectrometry. The fatty acid profile was used to predict the mass of the glyceroglycolipids. A total of 103 and 161 molecular species of MGDG, and 66 and 136 molecular species of DGDG were identified in blade and stipe, respectively, by HPLC-ESI-MS/MS. The most abundant molecular species were identified from the total ion chromatograms. According to these, MGDG(20:5/18:4, 18:4/18:4, 16:0/18:1, 14:0/18:2, 14:0/18:1) and DGDG(20:5/18:4, 16:0/18:1, 14:0/18:1) were the most abundant in blade. On the other hand, in stipe, the most abundant molecular species were MGDG (14:0/18:2, 14:0/18:1, 16:0/18:1) and DGDG (14:0/18:1). The purpose of this study is to highlight the potential application of L. hyperborea in a biotechnological context.