The diterpenoid 7-keto-sempervirol, derived from Lycium chinense, displays anthelmintic activity against both Schistosoma mansoni and Fasciola hepatica.

BACKGROUND:Two platyhelminths of biomedical and commercial significance are Schistosoma mansoni (blood fluke) and Fasciola hepatica (liver fluke). These related trematodes are responsible for the chronic neglected tropical diseases schistosomiasis and fascioliasis, respectively. As no vaccine is cur...

Full description

Bibliographic Details
Published in:PLOS Neglected Tropical Diseases
Main Authors: Jennifer Edwards, Martha Brown, Emily Peak, Barbara Bartholomew, Robert J Nash, Karl F Hoffmann
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2015
Subjects:
Online Access:https://doi.org/10.1371/journal.pntd.0003604
https://doaj.org/article/538de8dd4caa4b9c837c61ebdc26c997
Description
Summary:BACKGROUND:Two platyhelminths of biomedical and commercial significance are Schistosoma mansoni (blood fluke) and Fasciola hepatica (liver fluke). These related trematodes are responsible for the chronic neglected tropical diseases schistosomiasis and fascioliasis, respectively. As no vaccine is currently available for anti-flukicidal immunoprophylaxis, current treatment is mediated by mono-chemical chemotherapy in the form of mass drug administration (MDA) (praziquantel for schistosomiasis) or drenching (triclabendazole for fascioliasis) programmes. This overreliance on single chemotherapeutic classes has dramatically limited the number of novel chemical entities entering anthelmintic drug discovery pipelines, raising significant concerns for the future of sustainable blood and liver fluke control. METHODOLOGY/ PRINCIPLE FINDINGS:Here we demonstrate that 7-keto-sempervirol, a diterpenoid isolated from Lycium chinense, has dual anthelmintic activity against related S. mansoni and F. hepatica trematodes. Using a microtiter plate-based helminth fluorescent bioassay (HFB), this activity is specific (Therapeutic index = 4.2, when compared to HepG2 cell lines) and moderately potent (LD50 = 19.1 μM) against S. mansoni schistosomula cultured in vitro. This anti-schistosomula effect translates into activity against both adult male and female schistosomes cultured in vitro where 7-keto-sempervirol negatively affects motility/behaviour, surface architecture (inducing tegumental holes, tubercle swelling and spine loss/shortening), oviposition rates and egg morphology. As assessed by the HFB and microscopic phenotypic scoring matrices, 7-keto-sempervirol also effectively kills in vitro cultured F. hepatica newly excysted juveniles (NEJs, LD50 = 17.7 μM). Scanning electron microscopy (SEM) evaluation of adult F. hepatica liver flukes co-cultured in vitro with 7-keto-sempervirol additionally demonstrates phenotypic abnormalities including breaches in tegumental integrity and spine loss. CONCLUSIONS/ ...