Photosynthetic pigments and phenolic potential of Rhodiola rosea L. from plant communities of different ecology and geography

Introduction. Longitudinal studies of human activity and metabolism revealed various anti-inflammatory, immunomodulatory, antistress, antioxidant, and adaptogenic properties of such secondary plant metabolites as phenolic compounds and pigments. Human cells cannot synthesize these compounds. Therefo...

Full description

Bibliographic Details
Published in:Food Processing: Techniques and Technology
Main Authors: Sergeeva Irina Yu., Zaushintsena Alexandra V., Bryukhachev Evgeniy N.
Format: Article in Journal/Newspaper
Language:Russian
Published: Kemerovo State University 2020
Subjects:
Online Access:https://doi.org/10.21603/2074-9414-2020-3-393-403
https://doaj.org/article/513ff959dc3c4a7eacee3acd72a63ba6
Description
Summary:Introduction. Longitudinal studies of human activity and metabolism revealed various anti-inflammatory, immunomodulatory, antistress, antioxidant, and adaptogenic properties of such secondary plant metabolites as phenolic compounds and pigments. Human cells cannot synthesize these compounds. Therefore, food biotechnology requires new data on the photosynthetic potential of plants with good functional prospects. The research objective was to study the qualitative and quantitative profile of biologically active compounds of Rhodiola rosea L. harvested from various plant communities in order to define the potential of their extracts and minor compounds for food technologies. Study objects and methods. The research featured three communities of Rhodiola rosea L. originally located in ecologically and geographically different habitats. They were introduced into Kuzbass from the Kuznetsk Alatau, Gorny Altai, and the Tunka alpine tundra belt in Buryatia. The experiment began in 2018, when the rhizomes were dissected into equal shares of 40–42 g and placed in a medicinal plant nursery. The methods of high-performance liquid (HPLC) and thin-layer (TLC) chromatography were used to study the biologically active substances in the plant biomass. The photosynthetic pigments were detected using the spectrophotometric method. The obtained data underwent a statistical analysis based on Statistica 6.0 software. Results and discussion. The sample from the Gorny Altai community revealed twelve biologically active substances. Its rhizomes appeared rich in gallic acid with the maximum content (mg/g) of 10.26 ± 2.31, rosein (20.45 ± 3.46), daphneticin (13.80 ± 2.30), and salidroside (28.16 ± 2.27). The tops demonstrated the maximum content (mg/g) of astragaline (38.94 ± 2.21), tricine (13.07 ± 0.72), tricine-5-O-β-D-glucopyranoside (35.25 ± 1.66), tricine-7-O-β-D-glucopyranoside (30.23 ± 1.45), and tyrosol (21.80 ± 1.21). The Kuznetsk Alatau sample proved to possess five biologically active substances. Its rhizomes had the maximum ...