Pyrethroid resistance alters the blood-feeding behavior in Puerto Rican Aedes aegypti mosquitoes exposed to treated fabric.

Emerging insecticide resistance is a major issue for vector control. It decreases the effectiveness of insecticides, thereby requiring greater quantities for comparable control with a net increase in risk of disease resurgence, product cost, and damage risk to the ecosystem. Pyrethroid resistance ha...

Full description

Bibliographic Details
Published in:PLOS Neglected Tropical Diseases
Main Authors: Natasha M Agramonte, Jeffrey R Bloomquist, Ulrich R Bernier
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2017
Subjects:
Online Access:https://doi.org/10.1371/journal.pntd.0005954
https://doaj.org/article/510a62edb1ae4d298facc6c4e5682488
Description
Summary:Emerging insecticide resistance is a major issue for vector control. It decreases the effectiveness of insecticides, thereby requiring greater quantities for comparable control with a net increase in risk of disease resurgence, product cost, and damage risk to the ecosystem. Pyrethroid resistance has been documented in Puerto Rican populations of Aedes aegypti (L.) mosquitoes. In this study, topical toxicity of five insecticides (permethrin, etofenprox, deltamethrin, DDT, transfluthrin) was determined for susceptible (Orlando-ORL) and resistant (Puerto Rico-PR) strains of Ae. aegypti. Resistance ratios were calculated using LD50 values, and high resistance ratios for permethrin (112) and etofenprox (228) were observed for the Puerto Rico strain. Behavioral differences in blood-feeding activity for pyrethroid-resistant and pyrethroid-susceptible strains of Ae. aegypti when exposed to pyrethroid-treated cloth were also explored. Strains were exposed for 15 min to a range of concentrations of pyrethroid-treated uniform fabric in a cage that contained 60 female Ae. aegypti mosquitoes. Interestingly, the resistance ratios for blood-feeding were similar for permethrin (61) and etofenprox (70), but were lower than their respective resistance ratios for topical toxicity, suggesting that knockdown resistance was the primary mechanism of resistance in the blood feeding assays. Results showed a rightward shift in the dose-response curves for blood-feeding that indicated higher concentrations of pyrethroids were necessary to deter blood-feeding behavior in the pyrethroid-resistant Puerto Rican strain of Ae. aegypti.