Evaluation of a push–pull system consisting of transfluthrin-treated eave ribbons and odour-baited traps for control of indoor- and outdoor-biting malaria vectors

Abstract Background Push–pull strategies have been proposed as options to complement primary malaria prevention tools, indoor residual spraying (IRS) and long-lasting insecticide-treated nets (LLINs), by targeting particularly early-night biting and outdoor-biting mosquitoes. This study evaluated di...

Full description

Bibliographic Details
Published in:Malaria Journal
Main Authors: Arnold S. Mmbando, Elis P. A. Batista, Masoud Kilalangongono, Marceline F. Finda, Emmanuel P. Mwanga, Emmanuel W. Kaindoa, Khamis Kifungo, Rukiyah M. Njalambaha, Halfan S. Ngowo, Alvaro E. Eiras, Fredros O. Okumu
Format: Article in Journal/Newspaper
Language:English
Published: BMC 2019
Subjects:
Online Access:https://doi.org/10.1186/s12936-019-2714-1
https://doaj.org/article/4fa09e0a0d8c44218409c0ca4221db14
Description
Summary:Abstract Background Push–pull strategies have been proposed as options to complement primary malaria prevention tools, indoor residual spraying (IRS) and long-lasting insecticide-treated nets (LLINs), by targeting particularly early-night biting and outdoor-biting mosquitoes. This study evaluated different configurations of a push–pull system consisting of spatial repellents [transfluthrin-treated eave ribbons (0.25 g/m2 ai)] and odour-baited traps (CO2-baited BG-Malaria traps), against indoor-biting and outdoor-biting malaria vectors inside large semi-field systems. Methods Two experimental huts were used to evaluate protective efficacy of the spatial repellents (push-only), traps (pull-only) or their combinations (push–pull), relative to controls. Adult volunteers sat outdoors (1830 h–2200 h) catching mosquitoes attempting to bite them (outdoor-biting risk), and then went indoors (2200 h–0630 h) to sleep under bed nets beside which CDC-light traps caught host-seeking mosquitoes (indoor-biting risk). Number of traps and their distance from huts were varied to optimize protection, and 500 laboratory-reared Anopheles arabiensis released nightly inside the semi-field chambers over 122 experimentation nights. Results Push-pull offered higher protection than traps alone against indoor-biting (83.4% vs. 35.0%) and outdoor-biting (79% vs. 31%), but its advantage over repellents alone was non-existent against indoor-biting (83.4% vs. 81%) and modest for outdoor-biting (79% vs. 63%). Using two traps (1 per hut) offered higher protection than either one trap (0.5 per hut) or four traps (2 per hut). Compared to original distance (5 m from huts), efficacy of push–pull against indoor-biting peaked when traps were 15 m away, while efficacy against outdoor-biting peaked when traps were 30 m away. Conclusion The best configuration of push–pull comprised transfluthrin-treated eave ribbons plus two traps, each at least 15 m from huts. Efficacy of push–pull was mainly due to the spatial repellent component. Adding odour-baited ...