Syringic acid induces cancer cell death in the presence of Cu (II) ions via pro-oxidant activity

Objective: To investigate the effects of syringic acid on HEK 293 and HepG2 cells in the absence and presence of exogenous Cu (II) and Fe (II) ions. Methods: The antiproliferative effects of syringic acid on HEK 293 and HepG2 cells in the absence and presence of exogenous Cu (II) and Fe (II) ions we...

Full description

Bibliographic Details
Published in:Asian Pacific Journal of Tropical Biomedicine
Main Authors: Marzieh Rashedinia, Azita Nasrollahi, Marzieh Shafaghat, Shahrzad Momeni, Forough Iranpak, Jamileh Saberzadeh, Rita Arabsolghar, Zahra Sabahi
Format: Article in Journal/Newspaper
Language:English
Published: Wolters Kluwer Medknow Publications 2022
Subjects:
Online Access:https://doi.org/10.4103/2221-1691.345519
https://doaj.org/article/4e5d8928a4dd4d148a6346f2323a37ac
Description
Summary:Objective: To investigate the effects of syringic acid on HEK 293 and HepG2 cells in the absence and presence of exogenous Cu (II) and Fe (II) ions. Methods: The antiproliferative effects of syringic acid on HEK 293 and HepG2 cells in the absence and presence of exogenous Cu (II) and Fe (II) ions were examined by MTT assay. Additionally, colony-forming, reactive oxidative species (ROS) generation, apoptosis induction, autophagy, mitochondrial membrane potential, and mitochondrial mass were investigated. Results: At 24 and 72 h, no significant differences were observed in the viability of HepG2 cells between the control and syringic acid + Fe (II) groups. However, exposure of HepG2 cells to syringic acid + Cu (II) for 72 h reduced the cell viability significantly. Furthermore, ROS formation, induction of apoptosis, and autophagic vacuoles were significantly increased in HepG2 cells without marked changes in mitochondrial membrane potential and mitochondrial mass. Moreover, syringic acid + Cu (II) reduced the plating efficiency and surviving fraction significantly. Conclusions: The combination of syringic acid with Cu (II) was toxic to cancer cells and showed pro-oxidant activity. In addition, this combination induced autophagy in cancer cells with less cytotoxic effects on normal cells, which is a potential candidate for the development of novel therapeutics towards cancer.