Anti-Inflammatory Effects of Antarctic Lichen Umbilicaria antarctica Methanol Extract in Lipopolysaccharide-Stimulated RAW 264.7 Macrophage Cells and Zebrafish Model

Umbilicaria antarctica (UA) is a member of the family Umbilicariaceae. To the best of our knowledge, no studies on its anti-inflammatory effects have been reported yet. In the present study, we examined its ability to suppress inflammatory responses and the molecular mechanisms underlying these abil...

Full description

Bibliographic Details
Published in:BioMed Research International
Main Authors: Ju-Mi Hong, Jung Eun Kim, Seul Ki Min, Kyung Hee Kim, Se Jong Han, Joung Han Yim, Hyun Park, Jin-Hyoung Kim, Il-Chan Kim
Format: Article in Journal/Newspaper
Language:English
Published: Hindawi Limited 2021
Subjects:
R
Online Access:https://doi.org/10.1155/2021/8812090
https://doaj.org/article/4d73f99b7d904aea896ce527b3f01f30
Description
Summary:Umbilicaria antarctica (UA) is a member of the family Umbilicariaceae. To the best of our knowledge, no studies on its anti-inflammatory effects have been reported yet. In the present study, we examined its ability to suppress inflammatory responses and the molecular mechanisms underlying these abilities using lipopolysaccharide- (LPS-) stimulated RAW 264.7 cells and a zebrafish model of inflammation. We investigated the effects of UA on the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS-stimulated RAW 264.7 cells. To explore the anti-inflammatory mechanisms of UA, we measured the mRNA and protein expression of proinflammatory mediators in LPS-stimulated RAW 264.7 cells using quantitative RT-PCR and western blot analyses, respectively. UA significantly inhibited the production of NO, PGE2, interleukin- (IL-) 6, and tumor necrosis factor- (TNF-) α in the LPS-stimulated RAW 264.7 cells. It also suppressed the mRNA and protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor- (NF-) κB activation in LPS-stimulated RAW 264.7 cells and tail pin-cutting-induced zebrafish model. Collectively, these findings indicate that UA significantly inhibits LPS-stimulated inflammatory responses. These effects were considered to be strongly associated with the suppression of NF-κB activation. Overall, our results demonstrate that UA extract exerts strong anti-inflammatory activities in in vitro and in vivo models and suggest that UA may be an effective novel therapeutic agent for the treatment of inflammatory diseases.