Hybrid General Regression NN Model for Efficient Operation of Centralized TEG System under Non-Uniform Thermal Gradients

The global energy demand, along with the proportionate share of renewable energy, is increasing rapidly. Renewables such as thermoelectric generators (TEG) systems have lower power ratings but a highly durable and cost-effective renewable energy technology that can deal with waste heat energy. The m...

Full description

Bibliographic Details
Published in:Electronics
Main Authors: Noman Mujeeb Khan, Abbas Ahmed, Syed Kamran Haider, Muhammad Hamza Zafar, Majad Mansoor, Naureen Akhtar
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2023
Subjects:
Online Access:https://doi.org/10.3390/electronics12071688
https://doaj.org/article/4c563dc0b1a94a5cb2ac2d60e2170aa2
Description
Summary:The global energy demand, along with the proportionate share of renewable energy, is increasing rapidly. Renewables such as thermoelectric generators (TEG) systems have lower power ratings but a highly durable and cost-effective renewable energy technology that can deal with waste heat energy. The main issues associated with TEG systems are related to their vigorous operating conditions. The dynamic temperature gradient across TEG surfaces induces non-uniform temperature distribution (NUTD) that significantly impacts the available output electrical energy. The mismatching current impact may lower the energy yield by up to 70% of extractable thermal energy. As a solution, a hybrid general regression neural network (GRNN) orca predation algorithm (OPA) is proposed; backpropagation limitations are minimized by utilizing the stochastic optimization algorithm named OPA. The conclusions are evaluated and contrasted with highly improved versions of the conventional particle swarm optimization (PSO), grey wolf optimizer (GWO), and Harris hawk optimization (HHO). A detailed analytical and statistical analysis is carried out through five distinct case studies, including field stochastic data study, NUTD, varying temperature, and load studies. Along with statistical matrix errors such as MAE, RMSE, and RE, the results are assessed in terms of efficiency, tracking, and settling time. The results show that superior performance is achieved by the proposed GRNN-OPA based MPPT by 35% faster tracking, and up to 90–110% quicker settling time which, in turn, enables the 4–8% higher energy accumulation over a longer period of operation. A low-cost experimental setup is devised to further validate the practicality of the proposed techniques. From such comprehensive analysis, it can be safely concluded that the proposed GRNN-OPA successfully undertakes the drawbacks of existing classical MPPT methods with higher efficiency.