Life Cycle Plasticity in Typhula and Pistillaria in the Arctic and the Temperate Zone

Typhula ceae Jülich is one of the cold-adapted fungal families in basidiomycetes. The representative genera, Typhula (Pers.) Fr. and Pistillaria Fr., are distinguished by the discontinuity between stems and hymenia in the former and the continuity in the latter (Fries 1821). This taxonomic criterion...

Full description

Bibliographic Details
Published in:Microorganisms
Main Authors: Tamotsu Hoshino, Yuka Yajima, Yosuke Degawa, Atsushi Kume, Oleg B. Tkachenko, Naoyuki Matsumoto
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2023
Subjects:
Online Access:https://doi.org/10.3390/microorganisms11082028
https://doaj.org/article/49cafa65d9af476aab8285cdadde1ce3
Description
Summary:Typhula ceae Jülich is one of the cold-adapted fungal families in basidiomycetes. The representative genera, Typhula (Pers.) Fr. and Pistillaria Fr., are distinguished by the discontinuity between stems and hymenia in the former and the continuity in the latter (Fries 1821). This taxonomic criterion is ambiguous, and consequently, the view of Karsten (1882) has been widely accepted: Typhula develops basidiomata from sclerotia, while basidiomata develop directly from substrata in Pistillaris . However, Corner (1970) observed basidiomata of Pistillaria petasitis S. Imai developing from sclerotia in Hokkaido, Japan. We later recognized that P. petasitis basidiomata also emerged directly from substrates on the ground in Hokkaido. An aberrant form of Typhula hyperborea H. Ekstr. was found in Upernavik, West Greenland. This specimen had a stem-like structure on a Poaceae plant, and sclerotia developed on its tip. Similar phenomena were found in other Typhula species in Japan. In this study, we aimed to elucidate the life cycle plasticity in the genera Typhula and Pistillaria through the interactions between their ecophysiological potential and environmental conditions in their localities. We collected and prepared strains of the above fungi from sclerotia or basidiomata, and we elucidated the taxonomical relationship and determined the physiological characteristics of our strains. Our findings imply that both Typhula and Pistillaria have the potential to produce sclerotia as well as the capacity for mycelial growth at ambient air temperatures in each locality where samples were collected. These findings suggest that Typhula spp. develope basidiomata not only from the sclerotia dispersed by the basidiospores but also from mycelia generated by the spore germination, which formed basidiomata multiple times, depending on their growth environments.