Identification of Novel Chemical Scaffolds Inhibiting Trypanothione Synthetase from Pathogenic Trypanosomatids.

BACKGROUND:The search for novel chemical entities targeting essential and parasite-specific pathways is considered a priority for neglected diseases such as trypanosomiasis and leishmaniasis. The thiol-dependent redox metabolism of trypanosomatids relies on bis-glutathionylspermidine [trypanothione,...

Full description

Bibliographic Details
Published in:PLOS Neglected Tropical Diseases
Main Authors: Diego Benítez, Andrea Medeiros, Lucía Fiestas, Esteban A Panozzo-Zenere, Franziska Maiwald, Kyriakos C Prousis, Marina Roussaki, Theodora Calogeropoulou, Anastasia Detsi, Timo Jaeger, Jonas Šarlauskas, Lucíja Peterlin Mašič, Conrad Kunick, Guillermo R Labadie, Leopold Flohé, Marcelo A Comini
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2016
Subjects:
Online Access:https://doi.org/10.1371/journal.pntd.0004617
https://doaj.org/article/437dd6f537b74d759f740c4c444491a2
Description
Summary:BACKGROUND:The search for novel chemical entities targeting essential and parasite-specific pathways is considered a priority for neglected diseases such as trypanosomiasis and leishmaniasis. The thiol-dependent redox metabolism of trypanosomatids relies on bis-glutathionylspermidine [trypanothione, T(SH)2], a low molecular mass cosubstrate absent in the host. In pathogenic trypanosomatids, a single enzyme, trypanothione synthetase (TryS), catalyzes trypanothione biosynthesis, which is indispensable for parasite survival. Thus, TryS qualifies as an attractive drug target candidate. METHODOLOGY/PRINCIPAL FINDING:A library composed of 144 compounds from 7 different families and several singletons was screened against TryS from three major pathogen species (Trypanosoma brucei, Trypanosoma cruzi and Leishmania infantum). The screening conditions were adjusted to the TryS´ kinetic parameters and intracellular concentration of substrates corresponding to each trypanosomatid species, and/or to avoid assay interference. The screening assay yielded suitable Z' and signal to noise values (≥0.85 and ~3.5, respectively), and high intra-assay reproducibility. Several novel chemical scaffolds were identified as low μM and selective tri-tryp TryS inhibitors. Compounds displaying multi-TryS inhibition (N,N'-bis(3,4-substituted-benzyl) diamine derivatives) and an N5-substituted paullone (MOL2008) halted the proliferation of infective Trypanosoma brucei (EC50 in the nM range) and Leishmania infantum promastigotes (EC50 = 12 μM), respectively. A bis-benzyl diamine derivative and MOL2008 depleted intracellular trypanothione in treated parasites, which confirmed the on-target activity of these compounds. CONCLUSIONS/SIGNIFICANCE:Novel molecular scaffolds with on-target mode of action were identified as hit candidates for TryS inhibition. Due to the remarkable species-specificity exhibited by tri-tryp TryS towards the compounds, future optimization and screening campaigns should aim at designing and detecting, respectively, more ...