Volatile organic compound fluxes in a subarctic peatland and lake

Ecosystems exchange climate-relevant trace gases with the atmosphere, including volatile organic compounds (VOCs) that are a small but highly reactive part of the carbon cycle. VOCs have important ecological functions and implications for atmospheric chemistry and climate. We measured the ecosystem-...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: R. Seco, T. Holst, M. S. Matzen, A. Westergaard-Nielsen, T. Li, T. Simin, J. Jansen, P. Crill, T. Friborg, J. Rinne, R. Rinnan
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2020
Subjects:
Online Access:https://doi.org/10.5194/acp-20-13399-2020
https://doaj.org/article/3fbae6e752274a5ea7a5aab2290cb772
Description
Summary:Ecosystems exchange climate-relevant trace gases with the atmosphere, including volatile organic compounds (VOCs) that are a small but highly reactive part of the carbon cycle. VOCs have important ecological functions and implications for atmospheric chemistry and climate. We measured the ecosystem-level surface–atmosphere VOC fluxes using the eddy covariance technique at a shallow subarctic lake and an adjacent graminoid-dominated fen in northern Sweden during two contrasting periods: the peak growing season (mid-July) and the senescent period post-growing season (September–October). In July, the fen was a net source of methanol, acetaldehyde, acetone, dimethyl sulfide, isoprene, and monoterpenes. All of these VOCs showed a diel cycle of emission with maxima around noon and isoprene dominated the fluxes ( 93±22 µ mol m −2 d −1 , mean ± SE). Isoprene emission was strongly stimulated by temperature and presented a steeper response to temperature ( Q 10 =14.5 ) than that typically assumed in biogenic emission models, supporting the high temperature sensitivity of arctic vegetation. In September, net emissions of methanol and isoprene were drastically reduced, while acetaldehyde and acetone were deposited to the fen, with rates of up to <math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">6.7</mn><mo>±</mo><mn mathvariant="normal">2.8</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="4d3200e0a60dd0dfb9c4ba1ba34ec29c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-13399-2020-ie00001.svg" width="52pt" height="10pt" src="acp-20-13399-2020-ie00001.png"/></svg:svg> µ mol m −2 d −1 for acetaldehyde. Remarkably, the lake was a sink for acetaldehyde and acetone during both periods, with average fluxes up to <math ...