Global and local Joule heating during substorms in St. Patrick’s Day 2015 geomagnetic storm

Abstract The first super storm of solar cycle 24 occurred on “St. Patrick’s Day” (17 March 2015), with a minimum Dst level of − 223 nT. Five major substorms in this super storm were selected, with minimum values of local electrojet index (IL) ranging from − 1662 to − 673 nT. The selected substorms a...

Full description

Bibliographic Details
Published in:Earth, Planets and Space
Main Authors: K. J. Suji, P. R. Prince
Format: Article in Journal/Newspaper
Language:English
Published: SpringerOpen 2018
Subjects:
G
Online Access:https://doi.org/10.1186/s40623-018-0940-3
https://doaj.org/article/3e563f6b73dc46aeb0fa26a7bb964682
Description
Summary:Abstract The first super storm of solar cycle 24 occurred on “St. Patrick’s Day” (17 March 2015), with a minimum Dst level of − 223 nT. Five major substorms in this super storm were selected, with minimum values of local electrojet index (IL) ranging from − 1662 to − 673 nT. The selected substorms are all in the 22:00 MLT–06:00 MLT sector of the auroral oval region showing associated Pi2s and negative bays in the H-component of magnetograms, derived from the IMAGE magnetometer longitudinal (Fennoscandia) chain. The solar wind energy input is estimated as time integral of Akasofu’s epsilon parameter, determined from the SuperMAG magnetometer. The local ionospheric Joule heating (local JH) rate, in the midnight or post-midnight sectors, is estimated using a modified form of Ahn’s empirical conversion. The Global ionospheric Joule heating rate in the northern hemisphere (global JH) is taken from OpenGGCM model. For the substorm in the main phase of the superstorm, the local JH consumes only 9% (8%, if the IL is replaced by AL index in the empirical conversion relation) of the global JH. However, 40–86% (39–48%, if the IL is replaced by AL index in the empirical conversion relation) of global JH is consumed as local JH for the remaining substorms.