A novel diagnostic algorithm equipped on an automated hematology analyzer to differentiate between common causes of febrile illness in Southeast Asia.

BACKGROUND:Distinguishing arboviral infections from bacterial causes of febrile illness is of great importance for clinical management. The Infection Manager System (IMS) is a novel diagnostic algorithm equipped on a Sysmex hematology analyzer that evaluates the host response using novel techniques...

Full description

Bibliographic Details
Published in:PLOS Neglected Tropical Diseases
Main Authors: Susantina Prodjosoewojo, Silvita F Riswari, Hofiya Djauhari, Herman Kosasih, L Joost van Pelt, Bachti Alisjahbana, Andre J van der Ven, Quirijn de Mast
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2019
Subjects:
Online Access:https://doi.org/10.1371/journal.pntd.0007183
https://doaj.org/article/3d016313a7e54a7f8d88a53a144ad6dd
Description
Summary:BACKGROUND:Distinguishing arboviral infections from bacterial causes of febrile illness is of great importance for clinical management. The Infection Manager System (IMS) is a novel diagnostic algorithm equipped on a Sysmex hematology analyzer that evaluates the host response using novel techniques that quantify cellular activation and cell membrane composition. The aim of this study was to train and validate the IMS to differentiate between arboviral and common bacterial infections in Southeast Asia and compare its performance against C-reactive protein (CRP) and procalcitonin (PCT). METHODOLOGY/PRINCIPAL FINDINGS:600 adult Indonesian patients with acute febrile illness were enrolled in a prospective cohort study and analyzed using a structured diagnostic protocol. The IMS was first trained on the first 200 patients and subsequently validated using the complete cohort. A definite infectious etiology could be determined in 190 of 463 evaluable patients (41%), including 89 arboviral infections (81 dengue and 8 chikungunya), 94 bacterial infections (26 murine typhus, 16 salmonellosis, 6 leptospirosis and 46 cosmopolitan bacterial infections), 3 concomitant arboviral-bacterial infections, and 4 malaria infections. The IMS detected inflammation in all but two participants. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the IMS for arboviral infections were 69.7%, 97.9%, 96.9%, and 77.3%, respectively, and for bacterial infections 77.7%, 93.3%, 92.4%, and 79.8%. Inflammation remained unclassified in 19.1% and 22.5% of patients with a proven bacterial or arboviral infection. When cases of unclassified inflammation were grouped in the bacterial etiology group, the NPV for bacterial infection was 95.5%. IMS performed comparable to CRP and outperformed PCT in this cohort. CONCLUSIONS/SIGNIFICANCE:The IMS is an automated, easy to use, novel diagnostic tool that allows rapid differentiation between common causes of febrile illness in Southeast Asia.