The fallout from Fukushima Daiichi nuclear accident profiles a new dating reference in ice and comparison with the Chernobyl accident

Absolute-age dating horizons play a pillar role in the reconstruction of an ice core chronology. In the modern era, these have included the global fallout from massive volcanic eruptions, atmospheric and marine thermonuclear weapons testing and nuclear accidents. After the occurrence of the Fukushim...

Full description

Bibliographic Details
Published in:Environmental Research Letters
Main Authors: Feiteng Wang, Jing Ming, Ross Edwards, Zhongqin Li, Ninglian Wang
Format: Article in Journal/Newspaper
Language:English
Published: IOP Publishing 2020
Subjects:
Q
Online Access:https://doi.org/10.1088/1748-9326/ab83a9
https://doaj.org/article/377f67f7286548a2a22b13d4558450a9
Description
Summary:Absolute-age dating horizons play a pillar role in the reconstruction of an ice core chronology. In the modern era, these have included the global fallout from massive volcanic eruptions, atmospheric and marine thermonuclear weapons testing and nuclear accidents. After the occurrence of the Fukushima Daiichi nuclear accident (FDNA) on March 11 2011, the simulation of the radioactivity from the FDNA by a dispersion model (HYSPLIT) shows that the nuclides reached the study area in late March, consistent with the ground measurements in Xi’an, Lanzhou and Urumqi. To investigate the deposition of radioactivity resulting from the FDNA, we collected snowpack samples from four glaciers (i.e. Glacier No. 1, Glacier No. 72, Qiyi and Shiyi glaciers, respectively) in northwestern China and analysed them for total β activity (TBA). The measured TBA in the FDNA layers were increased by two to four times, compared with the averages in the non-FDNA layers. We revisited Glacier No. 1 in 2018 and studied a much deeper snow-pit profile for the TBA, seven years after the first-time investigation into a relatively shallow snow pit in 2011. The TBA concentrated in a dust layer and became more significant in 2018 compared to that in 2011. We compared the TBA in Glacier No. 1 with that in the Muztagata glacier from the Chernobyl accident in 1986, and the depositions of radioactivity in the two High-Asian glaciers were comparable. We conclude that the FDNA formed a distinctly new lasting reference in the snow, which could help date the snow and ice in the Northern Hemisphere.