Geothermal Energy for Sustainable Food Production in Canada’s Remote Northern Communities

The cold, remote, northern regions of Canada constitute a challenging environment for the provision of reliable energy and food supply to communities. A transition from fossil fuels to renewables-based sources of energy is one positive step in reducing the greenhouse gases from the energy supply sys...

Full description

Bibliographic Details
Published in:Energies
Main Authors: Carson Kinney, Alireza Dehghani-Sanij, SeyedBijan Mahbaz, Maurice B. Dusseault, Jatin S. Nathwani, Roydon A. Fraser
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2019
Subjects:
T
Online Access:https://doi.org/10.3390/en12214058
https://doaj.org/article/36b8d01cdea84b41b38d6b7f13fcc83a
Description
Summary:The cold, remote, northern regions of Canada constitute a challenging environment for the provision of reliable energy and food supply to communities. A transition from fossil fuels to renewables-based sources of energy is one positive step in reducing the greenhouse gases from the energy supply system, which currently requires long-distance transport of diesel for electricity and heating needs. Geothermal energy can not only displace diesel for part of this energy need, it can provide a base-load source of local energy to support food production and mitigate adverse impacts of food insecurity on communities. In this proof-of-concept study, we highlight some potential benefits of using geothermal energy to serve Canada’s northern communities. Specifically, we focus on food security and evaluate the technical and economic feasibility of producing vegetables in a “controlled environment”, using ground sources of heat for energy requirements at three remote locations—Resolute Bay, Nunavut, as well as Moosonee and Pagwa in Ontario. The system is designed for geothermal district heating combined with efficient use of nutrients, water, and heat to yield a diverse crop of vegetables at an average cost up to 50% lower than the current cost of these vegetables delivered to Resolute Bay. The estimates of thermal energy requirements vary by location (e.g., they are in the range of 41 to 44 kW of thermal energy for a single greenhouse in Resolute Bay). To attain adequate system size to support the operation of such greenhouses, it is expected that up to 15% of the annually recommended servings of vegetables can be provided. Our comparative analysis of geothermal system capital costs shows significantly lower capital costs in Southern Ontario compared to Northern Canada—lower by one-third. Notwithstanding high capital costs, our study demonstrates the technical and economic feasibility of producing vegetables cost-effectively in the cold northern climate. This suggests that geothermal energy systems can supply the heat ...