RAPD-PCR – still a suitable Method for Genetically Underexplored Species?

Saithe (Pollachius virens) is a commercially important fish species; the annual catch quota in the Northeast Atlantic exceeds 100.000 t. Despite that saithe is underexplored from a fish population genetically view. Because saithe is a highly migratory species, which undergoes a long larval drift, th...

Full description

Bibliographic Details
Published in:Frontiers in Marine Science
Main Author: Konstanze Ursula Behrmann
Format: Article in Journal/Newspaper
Language:English
Published: Frontiers Media S.A. 2015
Subjects:
Q
Online Access:https://doi.org/10.3389/conf.fmars.2015.03.00096
https://doaj.org/article/36a0f7e1cc99468bb19ccc55a11deaf7
Description
Summary:Saithe (Pollachius virens) is a commercially important fish species; the annual catch quota in the Northeast Atlantic exceeds 100.000 t. Despite that saithe is underexplored from a fish population genetically view. Because saithe is a highly migratory species, which undergoes a long larval drift, the population structure of saithe within the Northeast Atlantic is not fully understood. Models used as a basis for the management plan are based on tagging studies, which have been carried out in the 1960th. But still there are doubts regarding the numbers of stocks living in the Northeast Atlantic. Migration routes are affected by salmon farming, growing steadily from the 1990th. In the last years a hyperstability of the saithe stock in the North Sea had been detected underlining the need to have a closer look on the saithe stocks in the Northeast Atlantic. Random amplified polymorphic DNA (RAPD) - PCR is a DNA fingerprinting technique often used in species identification and population genetic research for species, whose genome has not been sequenced very extensive as being the case for most of the food fishes. We applied RAPD-PCR in a study of saithe populations from the North Atlantic. The suitability of RAPD-PCR was improved by optimisations for enhanced reproducibility. The “classical” protocol for RAPD-PCR was modified by increasing the annealing temperature and shortening the time of annealing, providing a much better reproducibility. Thus, RAPD-PCR was found to be a straightforward and low-cost way, compared to other population genetic tools, to get a first insight into the population structure of less sequenced fish species within a very short time, being useful for preliminary studies or laboratories without large capacities for DNA sequencing.