Contrasting drivers and trends of ocean acidification in the subarctic Atlantic

Abstract The processes of warming, anthropogenic CO2 (Canth) accumulation, decreasing pHT (increasing [H+]T; concentration in total scale) and calcium carbonate saturation in the subarctic zone of the North Atlantic are unequivocal in the time-series measurements of the Iceland (IS-TS, 1985–2003) an...

Full description

Bibliographic Details
Published in:Scientific Reports
Main Authors: Fiz F. Pérez, Jon Olafsson, Solveig R. Ólafsdóttir, Marcos Fontela, Taro Takahashi
Format: Article in Journal/Newspaper
Language:English
Published: Nature Portfolio 2021
Subjects:
R
Q
Online Access:https://doi.org/10.1038/s41598-021-93324-3
https://doaj.org/article/334c7a7ef33844399bc82dd23a41376a
Description
Summary:Abstract The processes of warming, anthropogenic CO2 (Canth) accumulation, decreasing pHT (increasing [H+]T; concentration in total scale) and calcium carbonate saturation in the subarctic zone of the North Atlantic are unequivocal in the time-series measurements of the Iceland (IS-TS, 1985–2003) and Irminger Sea (IRM-TS, 1983–2013) stations. Both stations show high rates of Canth accumulation with different rates of warming, salinification and stratification linked to regional circulation and dynamics. At the IS-TS, advected and stratified waters of Arctic origin drive a strong increase in [H+]T, in the surface layer, which is nearly halved in the deep layer (44.7 ± 3.6 and 25.5 ± 1.0 pmol kg−1 yr−1, respectively). In contrast, the weak stratification at the IRM-TS allows warming, salinification and Canth uptake to reach the deep layer. The acidification trends are even stronger in the deep layer than in the surface layer (44.2 ± 1.0 pmol kg−1 yr−1 and 32.6 ± 3.4 pmol kg−1 yr−1 of [H+]T, respectively). The driver analysis detects that warming contributes up to 50% to the increase in [H+]T at the IRM-TS but has a small positive effect on calcium carbonate saturation. The Canth increase is the main driver of the observed acidification, but it is partially dampened by the northward advection of water with a relatively low natural CO2 content.