A secreted schistosome cathepsin B1 cysteine protease and acute schistosome infection induce a transient T helper 17 response.

The natural history of schistosome infection in the mammalian host is determined by CD4+ T helper responses mounted against different parasite life cycle stages. A T helper 2 (TH2) response to schistosome eggs is required for host survival and establishment of chronic infection. However, a TH2 cell-...

Full description

Bibliographic Details
Published in:PLOS Neglected Tropical Diseases
Main Authors: Kateryna Soloviova, Ellen C Fox, John P Dalton, Conor R Caffrey, Stephen J Davies
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2019
Subjects:
Online Access:https://doi.org/10.1371/journal.pntd.0007070
https://doaj.org/article/32e718d073934f1a871e38ea67fba021
Description
Summary:The natural history of schistosome infection in the mammalian host is determined by CD4+ T helper responses mounted against different parasite life cycle stages. A T helper 2 (TH2) response to schistosome eggs is required for host survival and establishment of chronic infection. However, a TH2 cell-derived cytokine also contributes to an immune milieu that is conducive to schistosome growth and development. Thus, the same responses that allow for host survival have been co-opted by schistosomes to facilitate parasite development and transmission, underscoring the significance of CD4+ T cell responses to both worms and eggs in the natural history of schistosome infection. Here we show that a cathepsin B1 cysteine protease secreted by schistosome worms not only induces TH2 responses, but also TH1 and TH17 responses, by a mechanism that is dependent on the proteolytic activity of the enzyme. Further investigation revealed that, in addition to the expected TH1 and TH2 responses, acute schistosome infection also induces a transient TH17 response that is rapidly down-regulated at the onset of oviposition. TH17 responses are implicated in the development of severe egg-induced pathology. The regulation of worm-induced TH17 responses during acute infection could therefore influence the expression of high and low pathology states as infection progresses.