LANDFAST ICEBERG HEIGHT RETRIEVAL AND EVALUATION BASED ON REMOTE SENSING APPROACHES IN ANTARCTICA

Icebergs are one of the important components of Antarctic ice loss, and their spatial distribution and volume changes have a profound impact on ocean circulation, sea ice formation, freshwater balance and carbon cycle in the Southern Ocean, and ship navigation. Therefore, effective monitoring of ice...

Full description

Bibliographic Details
Published in:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Main Authors: L. Wang, G. Qiao, I. V. Florinsky, S. Popov
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2022
Subjects:
T
Online Access:https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-785-2022
https://doaj.org/article/3226a7592c414faaa25d3e57f2a24bdd
Description
Summary:Icebergs are one of the important components of Antarctic ice loss, and their spatial distribution and volume changes have a profound impact on ocean circulation, sea ice formation, freshwater balance and carbon cycle in the Southern Ocean, and ship navigation. Therefore, effective monitoring of icebergs is of great significance. Iceberg height is an important parameter of iceberg volume, and its accurate estimation is crucial to the calculation of iceberg thickness and volume. In this paper, based on optical satellite images, satellite altimetry data and digital surface model (DSM) derived from unmanned aerial vehicle (UAV), the iceberg height retrieval approaches were studied, including shadow based, satellite altimetry based and DSM based methods. Then, the results of different approaches were evaluated and analyzed by taking icebergs in the landfast ice area as an example. Finally, we concluded that all three methods could effectively extract the height information of icebergs. For the shadow-height method with relatively low accuracy, lower sun altitude and higher icebergs would be more conducive to accurate height estimation.