Report on workshop"Structure and evolution of Eurasia (super-) continent"

A workshop on Structure and evolution of Eurasia (super-) continent" was held on 23rd February 2004, at the National Institute of Polar Research with 29 participants. This provided an opportunity to review the history of amalgamation and breakup of past super-continents in the Earth's evol...

Full description

Bibliographic Details
Main Author: Masaki Kanao
Format: Article in Journal/Newspaper
Language:English
Japanese
Published: National Institute of Polar Research 2004
Subjects:
Online Access:https://doi.org/10.15094/00009299
https://doaj.org/article/3224e15e4fee4f95ab5ecbb75f621e5a
Description
Summary:A workshop on Structure and evolution of Eurasia (super-) continent" was held on 23rd February 2004, at the National Institute of Polar Research with 29 participants. This provided an opportunity to review the history of amalgamation and breakup of past super-continents in the Earth's evolution, and speculate on the possibility of future super-continent formation. The largest continent on the present Earth, Eurasia, has been formed from an assembly of several sub-continental blocks including Asia, India and Europe, etc: it is also considered to be the nucleus of a future super-continent expected to form 250 m.y. after the present. In this workshop, several interesting topics were presented regarding the formation process, structure and dynamics of Eurasia, in particular in the deep crust and upper mantle. The first half of the workshop covered structural geology, shallow and deep seismic structure, and a simulation model of the Himalaya-Tibet region, known as a typical ongoing continent-continent collision zone. Inner crustal deformation of Eurasia was demonstrated by a newly developed Discrete Element method. In the latter half of the workshop, the possibility of formation of a future super-continent in the Western Pacific Triangular Zone was introduced with geological interpretation associated with an origin of the hot super-plumes. Seismic tomographic studies, particularly in China, which have revealed interesting features such as low velocity anomalies beneath the volcanic area, together with the presence of subducting Indian plates beneath the Tibet region were introduced. In the northwest Pacific region, remnant subducted slabs of the Kula plate have been found by local seismic tomography. Finally, a review of continental dynamics from gravity studies, and broadband seismic observations in the Baikal rift zones, were presented associated with the tectonics and evolution of central Eurasia. The formation mechanism of a hot super-plume in the deep interior of the Earth, such as at the Core-Mantle Boundary, ...