Purification of Antioxidant Peptides by High Resolution Mass Spectrometry from Simulated Gastrointestinal Digestion Hydrolysates of Alaska Pollock (Theragra chalcogramma) Skin Collagen

In this study, the stable collagen hydrolysate was prepared by alcalase hydrolysis and twice simulated gastrointestinal digestion from Alaska pollock skin. The characteristics of hydrolysates and antioxidant activities in vitro, including 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radic...

Full description

Bibliographic Details
Published in:Marine Drugs
Main Authors: Liping Sun, Weidan Chang, Qingyu Ma, Yongliang Zhuang
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2016
Subjects:
Online Access:https://doi.org/10.3390/md14100186
https://doaj.org/article/30df2743818746939ebf96dd69114a9d
Description
Summary:In this study, the stable collagen hydrolysate was prepared by alcalase hydrolysis and twice simulated gastrointestinal digestion from Alaska pollock skin. The characteristics of hydrolysates and antioxidant activities in vitro, including 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS•+) scavenging activity, ferric-reducing antioxidant power (FRAP) and hydroxyl radical (OH·) scavenging activity, were determined. After twice simulated gastrointestinal digestion of skin collagen (SGI-2), the degree of hydrolysis (DH) reached 26.17%. The main molecular weight fractions of SGI-2 were 1026.26 and 640.53 Da, accounting for 59.49% and 18.34%, respectively. Amino acid composition analysis showed that SGI-2 had high content of total hydrophobic amino acid (307.98/1000). With the simulated gastrointestinal digestion progressing, the antioxidant activities increased significantly (p < 0.05). SGI-2 was further purified by gel filtration chromatography, ion exchange chromatography and high performance liquid chromatography, and the A1a3c–p fraction with high hydroxyl radical scavenging activity (IC50 = 7.63 μg/mL) was obtained. The molecular weights and amino acid sequences of key peptides of A1a3c–p were analyzed using high resolution mass spectrometry (LC-ESI-LTQ-Orbitrap-MS) combined with de novo software and UniProt of MaxQuant software. Four peptides were identified from A1a3c–p, including YGCC (444.1137 Da) and DSSCSG (554.1642 Da) identified by de novo software and NNAEYYK (900.3978 Da) and PAGNVR (612.3344 Da) identified by UniProt of MaxQuant software. The molecular weights and amino acid sequences of four peptides were in accordance with the features of antioxidant peptides. The results indicated that different peptides were identified by different data analysis software according to spectrometry mass data. Considering the complexity of LC-ESI-LTQ-Orbitrap-MS, it was necessary to use the different methods to identify the key peptides from protein hydrolysates.