ACCURACY AND RELIABILITY ASSESSMENT OF GLAS MEASUREMENTS OVER ISRAEL

Availability of spaceborne laser data on a global scale motivates evaluation of their quality as a means to improve large scale terrain models or to identify changes over time. One prominent spaceborne system is the Geoscience Laser Altimeter System (GLAS) mounted on board the Ice Cloud and land Ele...

Full description

Bibliographic Details
Published in:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Main Authors: Z. Shtain, S. Filin
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2012
Subjects:
T
Online Access:https://doi.org/10.5194/isprsarchives-XXXVIII-5-W12-247-2011
https://doaj.org/article/2e8fc2f54a1e4828a51b9bf802c5dc3c
Description
Summary:Availability of spaceborne laser data on a global scale motivates evaluation of their quality as a means to improve large scale terrain models or to identify changes over time. One prominent spaceborne system is the Geoscience Laser Altimeter System (GLAS) mounted on board the Ice Cloud and land Elevation Satellite (ICESat) whose objectives were to track elevation changes of the Greenland and Antarctica's glaciers, but topographic information on other regions has been acquired as well. As the ICESat mission is the first to offer high-standard spaceborne laser derived topographic information, this paper evaluates its data quality. To that end, a large set of laser returns over Israel has been utilized and evaluated against a wide spectrum of data as a reference.