Influence of cloud microphysical processes on black carbon wet removal, global distributions, and radiative forcing

Parameterizations that impact wet removal of black carbon (BC) remain uncertain in global climate models. In this study, we enhance the default wet deposition scheme for BC in the Community Earth System Model (CESM) to (a) add relevant physical processes that were not resolved in the default model a...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: J. Xu, J. Zhang, J. Liu, K. Yi, S. Xiang, X. Hu, Y. Wang, S. Tao, G. Ban-Weiss
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2019
Subjects:
Online Access:https://doi.org/10.5194/acp-19-1587-2019
https://doaj.org/article/2d37276005df4ab497c4dd65e5950120
Description
Summary:Parameterizations that impact wet removal of black carbon (BC) remain uncertain in global climate models. In this study, we enhance the default wet deposition scheme for BC in the Community Earth System Model (CESM) to (a) add relevant physical processes that were not resolved in the default model and (b) facilitate understanding of the relative importance of various cloud processes on BC distributions. We find that the enhanced scheme greatly improves model performance against HIPPO observations relative to the default scheme. We find that convection scavenging, aerosol activation, ice nucleation, evaporation of rain or snow, and below-cloud scavenging dominate wet deposition of BC. BC conversion rates for processes related to in-cloud water–ice conversion (i.e., riming, the Bergeron process, and evaporation of cloud water sedimentation) are relatively smaller, but have large seasonal variations. We also conduct sensitivity simulations that turn off each cloud process one at a time to quantify the influence of cloud processes on BC distributions and radiative forcing. Convective scavenging is found to have the largest impact on BC concentrations at mid-altitudes over the tropics and even globally. In addition, BC is sensitive to all cloud processes over the Northern Hemisphere at high latitudes. As for BC vertical distributions, convective scavenging greatly influences BC fractions at different altitudes. Suppressing BC droplet activation in clouds mainly decreases the fraction of column BC below 5 km, whereas suppressing BC ice nucleation increases that above 10 km. During wintertime, the Bergeron process also significantly increases BC concentrations at lower altitudes over the Arctic. Our simulation yields a global BC burden of 85 Gg; corresponding direct radiative forcing (DRF) of BC estimated using the Parallel Offline Radiative Transfer (PORT) is 0.13 W m −2 , much lower than previous studies. The range of DRF derived from sensitivity simulations is large, 0.09–0.33 W m −2 , corresponding to BC burdens ...