The Romanomermis iyengari parasite for Anopheles pseudopunctipennis suppression in natural habitats in Oaxaca State, Mexico

In September and November 1996 Romanomermis iyengari Welch, a parasite of larval mosquitoes, was released in 44 natural larval habitat sites of Anopheles pseudopunctipennis Theobald in an attempt to reduce the larval populations of this important malaria vector. The selected treatment sites ranged i...

Full description

Bibliographic Details
Main Authors: Santamarina Mijares Alberto, Pérez Pacheco Rafael, Tomás Martínez Sabino Honorio, Enrique Cantón Luis, Flores Ambrosio Gonzalo
Format: Article in Journal/Newspaper
Language:English
Spanish
Portuguese
Published: Pan American Health Organization 1999
Subjects:
R
Online Access:https://doaj.org/article/2b077cd7e05f46bcb74b307f5574e79f
Description
Summary:In September and November 1996 Romanomermis iyengari Welch, a parasite of larval mosquitoes, was released in 44 natural larval habitat sites of Anopheles pseudopunctipennis Theobald in an attempt to reduce the larval populations of this important malaria vector. The selected treatment sites ranged in size from 5 to 500 m². The study was carried out in Pochutla District of Oaxaca State, on the Pacific coast of Mexico. Chemical pesticides to reduce vector populations have been the principal tool in malaria suppression campaigns. However, the excessive use of these chemicals has created pesticide resistance and other serious collateral problems. Therefore, a biological control project using agents that are pathogens of Anopheles larvae was initiated in 1996. The principal objective was to establish mass rearing capacities for R. iyengari. Detailed methodology for rearing and introducing these nematodes into mosquito larval habitats was established at the National Polytechnic Institute of Oaxaca State. Before application of the parasites to larval habitats, site characteristics were determined, including size, depth, aquatic vegetation, salinity, pH, conductivity, temperature, and pretreatment larval density. With a compressed air sprayer, infective mermithid parasites were released at rates of either 2000 or 3000/m², and the parasites produced high levels of infection. Anopheles populations were sampled 72 h posttreatment, and the larvae obtained were taken to the laboratory and examined through microscopic dissection to determine infection levels and mean parasitism. Nematode parasitism ranged from 85 to 100% at all the treatment sites, even though no previous information concerning field parasitism of An. pseudopunctipennis by R. iyengari has been reported. In addition, a significant reduction of mosquito larval density at the treatment sites was found five days after the nematode application. Levels of parasitism were indicative of the number of mosquito larvae killed by the treatment since infected larvae never ...