The Use of the Value of Heat Cycle to Assess the Energy Stability of Permafrost Soils at the Change of Conditions on the Surface
The basis for assessing the stability of geosystems to changes in external heat cycle conditions is the calculation method. It is shown that permafrost soils are characterized by increased values of annual heat cycle QY ≥ 300 MJ/m2, i.e., half-sum of heat arrival and flow rate per year. This is due...
Published in: | Geosciences |
---|---|
Main Authors: | , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
MDPI AG
2019
|
Subjects: | |
Online Access: | https://doi.org/10.3390/geosciences9030112 https://doaj.org/article/294d58de5c204a1581f81957aa448db9 |
Summary: | The basis for assessing the stability of geosystems to changes in external heat cycle conditions is the calculation method. It is shown that permafrost soils are characterized by increased values of annual heat cycle QY ≥ 300 MJ/m2, i.e., half-sum of heat arrival and flow rate per year. This is due to the high heat consumption for melting soils (QPh = 0.7–0.8 QY) and warming them in the negative temperature range (QF). The heat cycle in frozen soil (QF) always has more heat cycle than in the thawed soil (QH). The condition QF > QH means the dominance of processes occurring at negative temperature, and the difference QF − QH is a quantitative assessment of the energy stability of soils to changes in heat exchange conditions on the surface. |
---|