Disentangling complex parasite interactions: Protection against cerebral malaria by one helminth species is jeopardized by co-infection with another.

Multi-species interactions can often have non-intuitive consequences. However, the study of parasite interactions has rarely gone beyond the effects of pairwise combinations of species, and the outcomes of multi-parasite interactions are poorly understood. We investigated the effects of co-infection...

Full description

Bibliographic Details
Published in:PLOS Neglected Tropical Diseases
Main Authors: Jessica L Abbate, Vanessa O Ezenwa, Jean-François Guégan, Marc Choisy, Mathieu Nacher, Benjamin Roche
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2018
Subjects:
Online Access:https://doi.org/10.1371/journal.pntd.0006483
https://doaj.org/article/291d996b59d34108a2be8a303cef4d75
Description
Summary:Multi-species interactions can often have non-intuitive consequences. However, the study of parasite interactions has rarely gone beyond the effects of pairwise combinations of species, and the outcomes of multi-parasite interactions are poorly understood. We investigated the effects of co-infection by four gastrointestinal helminth species on the development of cerebral malaria among Plasmodium falciparum-infected patients. We characterized associations among the helminth parasite infra-community, and then tested for independent (direct) and co-infection dependent (indirect) effects of helminths on cerebral malaria risk. We found that infection by Ascaris lumbricoides and Trichuris trichiura were both associated with direct reductions in cerebral malaria risk. However, the benefit of T. trichiura infection was halved in the presence of hookworm, revealing a strong indirect effect. Our study suggests that the outcome of interactions between two parasite species can be significantly modified by a third, emphasizing the critical role that parasite community interactions play in shaping infection outcomes.