Comparing prevalence of chronic kidney disease and its risk factors between population-based surveys in Russia and Norway

Abstract Background Little data exists on the prevalence of chronic kidney disease (CKD) in the Russian population. We aimed to estimate the prevalence of CKD in a population-based study in Russia, compare with a similar study in Norway, and investigate whether differences in risk factors explained...

Full description

Bibliographic Details
Published in:BMC Nephrology
Main Authors: Sarah Cook, Marit D. Solbu, Anne Elise Eggen, Olena Iakunchykova, Maria Averina, Laila A. Hopstock, Kamila Kholmatova, Alexander V. Kudryavtsev, David A. Leon, Sofia Malyutina, Andrew Ryabikov, Elizabeth Williamson, Dorothea Nitsch
Format: Article in Journal/Newspaper
Language:English
Published: BMC 2022
Subjects:
Online Access:https://doi.org/10.1186/s12882-022-02738-2
https://doaj.org/article/28c14d98b3ab4bcfb46db6a0fbfb44d5
Description
Summary:Abstract Background Little data exists on the prevalence of chronic kidney disease (CKD) in the Russian population. We aimed to estimate the prevalence of CKD in a population-based study in Russia, compare with a similar study in Norway, and investigate whether differences in risk factors explained between-study differences in CKD. Methods We compared age- and sex-standardised prevalence of reduced eGFR (< 60 ml/min/1.73m2 CKD-EPI creatinine equation), albuminuria and or a composite indicator of CKD (one measure of either reduced eGFR or albuminuria) between participants aged 40–69 in the population-based Know Your Heart (KYH) study, Russia (2015–2018 N = 4607) and the seventh Tromsø Study (Tromsø7), Norway (2015–2016 N = 17,646). We assessed the contribution of established CKD risk factors (low education, diabetes, hypertension, antihypertensive use, smoking, obesity) to between-study differences using logistic regression. Results Prevalence of reduced eGFR or albuminuria was 6.5% (95% Confidence Interval (CI) 5.4, 7.7) in KYH and 4.6% (95% CI 4.0, 5.2) in Tromsø7 standardised for sex and age. Odds of both clinical outcomes were higher in KYH than Tromsø7 (reduced eGFR OR 2.06 95% CI 1.67, 2.54; albuminuria OR 1.54 95% CI 1.16, 2.03) adjusted for sex and age. Risk factor adjustment explained the observed between-study difference in albuminuria (OR 0.92 95% CI 0.68, 1.25) but only partially reduced eGFR (OR 1.42 95% CI 1.11, 1.82). The strongest explanatory factors for the between-study difference was higher use of antihypertensives (Russian sample) for reduced eGFR and mean diastolic blood pressure for albuminuria. Conclusions We found evidence of a higher burden of CKD within the sample from the population in Arkhangelsk and Novosibirsk compared to Tromsø, partly explained by between-study population differences in established risk factors. In particular hypertension defined by medication use was an important factor associated with the higher CKD prevalence in the Russian sample.