On the evaluation of the stress intensity factor in calving models using linear elastic fracture mechanics
We investigate the appropriateness of calving or crevasse models from the literature using linear elastic fracture mechanics (LEFM). To this end, we compare LEFM model-predicted stress intensity factors (SIFs) against numerically computed SIFs using the displacement correlation method in conjunction...
Published in: | Journal of Glaciology |
---|---|
Main Authors: | , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Cambridge University Press
2018
|
Subjects: | |
Online Access: | https://doi.org/10.1017/jog.2018.64 https://doaj.org/article/27508525b3634d87ad990ede613471d5 |
Summary: | We investigate the appropriateness of calving or crevasse models from the literature using linear elastic fracture mechanics (LEFM). To this end, we compare LEFM model-predicted stress intensity factors (SIFs) against numerically computed SIFs using the displacement correlation method in conjunction with the finite element method. We present several benchmark simulations wherein we calculate the SIF at the tips of water-filled surface and basal crevasses penetrating through rectangular ice slabs under different boundary conditions, including grounded and floating conditions. Our simulation results indicate that the basal boundary condition significantly influences the SIF at the crevasse tips. We find that the existing calving models using LEFM are not generally accurate for evaluating SIFs in grounded glaciers or floating ice shelves. We also illustrate that using the ‘single edge crack’ weight function in the LEFM formulations may be appropriate for predicting calving from floating ice shelves, owing to the low fracture toughness of ice; whereas, using the ‘double edge crack’ or ‘central through crack’ weight functions is more appropriate for predicting calving from grounded glaciers. To conclude, we recommend using the displacement correlation method for SIF evaluation in real glaciers and ice shelves with complex geometries and boundary conditions. |
---|