Impacts of urban carbon dioxide emissions on sea-air flux and ocean acidification in nearshore waters.

Greatly enhanced atmospheric carbon dioxide (CO2) levels relative to well-mixed marine air are observed during periods of offshore winds at coastal sensor platforms in Monterey Bay, California, USA. The highest concentrations originate from urban and agricultural areas, are driven by diurnal winds,...

Full description

Bibliographic Details
Published in:PLOS ONE
Main Authors: Devon Northcott, Jeff Sevadjian, Diego A Sancho-Gallegos, Chris Wahl, Jules Friederich, Francisco P Chavez
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2019
Subjects:
R
Q
Online Access:https://doi.org/10.1371/journal.pone.0214403
https://doaj.org/article/2726750ad00c424e9e6cf62fc42f105c
Description
Summary:Greatly enhanced atmospheric carbon dioxide (CO2) levels relative to well-mixed marine air are observed during periods of offshore winds at coastal sensor platforms in Monterey Bay, California, USA. The highest concentrations originate from urban and agricultural areas, are driven by diurnal winds, and peak in the early morning. These enhanced atmospheric levels can be detected across a ~100km wide nearshore area and represent a significant addition to total oceanic CO2 uptake. A global estimate puts the added sea-air flux of CO2 from these greatly enhanced atmospheric CO2 levels at 25 million tonnes, roughly 1% of the ocean's annual CO2 uptake. The increased uptake over the 100 km coastal swath is of order 20%, indicating a potentially large impact on ocean acidification in productive coastal waters.